

SCHOOL OF ENGINEERING AND

TECHNOLOGY

Bachelor of Technology (Electrical and Electronics

Engineering)

B.Tech (EEE)

Programme Code: 02

2021-25

Approved in the 26th Meeting of Academic Council Held on 11 August 2021

Registrar K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

SCHOOL OF ENGINEERING AND

TECHNOLOGY

Bachelor of Technology (Electrical and Electronics Engineering)

B.Tech (EEE)

Programme Code: 02

2021-25

Approved in the 26th Meeting of Academic Council Held on 11 August 2021

PREFACE

The Academic Council in consultation with Deans, Faculty Members, Industry Experts and University Alumni constituted school- wise committees to draft the model curriculum of UG engineering courses. During the meetings held for developing curriculum for undergraduate engineering courses, a concern was shared that the overall credits are too high. It is important to lower the credits to 160 across all departments to lower the burden of syllabi and credits. The respective Head of Committees, Faculty members along with Industry Experts and Alumni discussed the existing system prevalent in various universities, industry requirements and market trends, employability, problem solving approach, need for life-long learning, and after due deliberations, the scheme and syllabus of the B. Tech (EEE) has been formalized.

Salient features of this model curriculum are enumerated below:

- 1. Curriculum has been designed in such a way that it encourages innovation and research as total numbers of credits have been reduced and many new courses have been incorporated in consultation with industry experts.
- 2. The revised curriculum has been designed where the students can understand the industry requirements and have hands-on experience. The students will develop a problem-solving approach and will meet the challenges of future.
- 3. Emerging areas in Electrical and Electronics sectors has been included in sixth and seventh semester.
- 4. Emphasis on hands-on training has been promoted by including two industrial training of 4 weeks and 6 weeks respectively, and project in seventh semester and six-month Industrial Internship in eighth semester.
- 5. The School ensures the revision of the curriculum to help students to achieve better employability, start-ups and other avenues for higher studies

Content	Page No
About K.R Mangalam University	4
About School of Engineering and Technology	4
School Vision	5
School Mission	5
Programs offered by School	5
Career Options	6
Program Educational Objectives (PEO)	6
Program Outcomes (PO)	7
Program Specific Outcomes (PSO)	7
Class Timings	8
Program Duration- B.Tech Electrical and Electronics Engineering	8
Scheme of Studies and Syllabi- B.Tech Electrical and Electronics Engineering	8

About K.R Mangalam University

The K.R. Mangalam Group has made a name for itself in the field of education. The K.R. Mangalam story goes back to the chain of schools that offered an alternative option of world-class education, pitching itself against the established elite schools, which had enjoyed a position of monopoly till then. Having blazed a new trail in school education, the focus of the group was aimed at higher education.

K.R. Mangalam University is the fastest-growing higher education institute in Gurugram, India. K. R. Mangalam University was established under the Haryana Private University Act 2006, received the approval of Haryana Legislature vide Amendment Act # 36 of 2013 and consent of the Hon'ble Governor of Haryana on 11th April 2013, which was published in the Gazette notification vide Leg. No.10/2013, dated 3rd May 2013.

Since its inception in 2013, the University has been striving to fulfil its prime objective of transforming young lives through ground-breaking pedagogy, global collaborations, and world-class infrastructure. Resources at K.R Mangalam University have been continuously upgraded to optimize opportunities for the students. Our students are groomed in a truly interdisciplinary environment where they grow up with integrative skills through interaction with students from engineering, social sciences, management and other study streams.

K.R Mangalam University is unique because of its:

- i. Enduring legacy of providing education to high achievers who demonstrate leadership in diverse fields.
- ii. Protective and nurturing environment for teaching, research, creativity, scholarship, social and economic justice.

Objectives

- i. To impart undergraduate, post graduate and doctoral education in identified areas of higher education.
- ii. To undertake research programmes with industrial interface.
- iii. To integrate its growth with the global needs and expectations of the major stake holders through teaching, research, exchange & collaborative programmes with foreign, Indian Universities/Institutions and MNCs.
- iv. To act as a nodal center for transfer of technology to the industry.
- v. To provide job oriented professional education to the Indian student community with particular focus on Haryana.

About School of Engineering & Technology (SOET)

School of Engineering and Technology (SOET), K.R. Mangalam University is dedicated to fostering innovation, excellence, and advancement in engineering and technology. Empowering the new

generation of change-makers by imparting exceptional understanding and intellect to facilitate the creation of highly sophisticated futuristic solutions. Our well-qualified academicians, accomplished

researchers and industry insiders are focused on imparting their extensive knowledge and expertise to students through various lectures, workshops, industrial visits, projects, and competitions throughout the year ensuring that students receive a comprehensive education that blends theory with practical application.

These programs offered at SOET have the distinct objective of equipping the students with knowledge, skills and attitudes in engineering and technology, to make them capable of successfully meeting the present requirements and future challenges in the engineering profession. SOET brings together outstanding academics, industry professionals, and experienced researchers to deliver a unique hands-on and multi-disciplinary learning experience.

The curriculum of programs has been designed to cater to the ever changing needs and demands of the industry. The curriculum is regularly updated. The school has best infrastructure including domain-specific labs. SOET aims to provide exposure to the principles and practices of Design / Developments and Projects in the area of engineering. SOET is offering Ph.D. programs also.

School Vision

To create, disseminate, and apply knowledge in science and technology to meet the higher education needs of India and the global society, To serve as an institutional model of excellence in scientific and technical education characterized by integration of teaching, research and innovation.

School Mission

M1: To create an environment where teaching and learning are prioritized, with all support activities being held accountable for their success.

M2: To strengthen the institution's position as the school of choice for students across the State & Nation.

M3: To promote creative, immersive, and lifelong learning skills while addressing societal concerns.

M4: To promote co- and extra-curricular activities for overall personality development of the students.

M5: To promote and undertake all-inclusive research and development activities.

M6: To instill in learners an entrepreneurial mindset and principles.

M7: Enhance industrial, institutional, national, and international partnerships for symbiotic relationships.

M8: To help students acquire and develop knowledge, skills and leadership qualities of the 21st Century and beyond.

Programmes offered by the School

School offers undergraduate B. Tech Program, B.Sc. (Hons) Program, postgraduate M. Tech Program, and Doctoral Program. All these programs are designed to impart scientific knowledge to the students

and provide theoretical and practical training in their respective fields.

B.Tech Electrical and Electronics Engineering (B.Tech EEE)

This program prepares the students for conceptualization, design, manufacturing and testing of a wide range of electrical and electronics based devices of mobile and digital computing sectors etc. it also trains the students in the area of power system and its basics, adding the basic electronics part as base subject the knowledge of electrical stream is blended by the expert faculty members of our university.

Eligibility Criteria: The student should have passed the 10+2 examination conducted by the Central Board of Secondary Education or equivalent examination from a recognized Board in Science with mathematics as one of the subjects and with an overall aggregate of 50% or more.

Course Outline: Power system designing, basics of network elements, theorems proofing and satisfying, Study related to electrical and electronics subjects required to understand the basics of engineering technology such as: Switchgear and Protection, renewable energy, power system modelling and simulation lab.

Career Options: Construction Industry, Nuclear power plant, automotive, textile, power, renewable energy industry, All government psu's, Indian Defence service.

Program Educational Objectives (PEO)

- **PEO 1**: To develop graduates who have strong foundation of knowledge and skills in the field of computer science and engineering.
- **PEO 2**: To develop graduates who are employable in industries/public sector/research organizations or work as an entrepreneur.
- **PEO 3**: To foster graduates who can provide solutions to challenging problems in their profession by applying computer engineering theory and practices.
- **PEO 4**: To encourage graduates who can provide leadership and are effective in multidisciplinary environment.
- **PEO 5**: To develop ability to demonstrate team work with the ability of leadership, analytical reasoning for solving time critical problems and strong human values for responsible professional.
- PEO 6: To impart knowledge and skills to analyze, design, test and implement diverse range of technology.

Program Outcomes (PO)

- **PO 1 Engineering Knowledge**: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO 2 Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3 Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4 Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5 Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO 6 The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering employability.
- **PO 7 Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8 Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9 Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11 Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects through entrepreneurship skills and in multidisciplinary environments.
- **PO 12 Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change through skill development.

Program Specific Outcomes (PSO): B. Tech. Electrical and Electronics Engineering

PSO1: Application of Concepts

An ability to specify, design and analyze systems that efficiently generate, transmit, distribute and utilize electrical power.

An ability to analyse and design electrical machinery, electrical/electronic circuits, electrical/solid state drive systems, lighting systems and deliver technological solution by assimilating advances in allied discipline

PSO2: Innovation and Industry Friendly:

An ability to analyze, design and implement the learning in electrical instrumentation, control and automation applications.

An ability to enhance the entrepreneurship skill and thus providing employability of the students.

PSO3: Ethics and Communication Skills

An ability to communicate in both oral and written forms, the work already done and the future plans with necessary road maps, demonstrating the practice of professional ethics and the concerns for social and environmental impact.

Program Duration: 4 Years

The maximum period for the completion of the B.Tech. (EEE), Programme offered by the University shall be four years.

Scheme of Studies and Syllabi

The scheme of studies and syllabi of B. Tech. (EEE) is given in the following pages. These are arranged as (a) common courses (b) degree-specific courses, in numeric order of the last three digits of the course code.

The first line contains; Course Code and Credits (C) of the course for each course.

This is followed by the course objectives, course outcome, a syllabus (Unit I to IV), Textbook, and reference books

Four Years B. Tech (EEE) Programme at a Glance

Semeste	1	2	3	4	5	6	7	8	Total
r									
Course	8	8	10	11	10	8	5	1	61
S									
Credit	22	21	24	24	21	20	18	12	162
S									

Scheme of Studies as per Learning Outcome Based Curriculum Framework (LOCF) and Choice based cerdits System (CBCS) ${}^{\circ}$

				ODD SI	EMESTER							F	EVEN SE	MESTER				
YEA R	S N o	AI CT E Cat	UNIV CAT	COU RSE COD E	COURSE TITLE	L	Т	P	С	S N o	AI CT E Cat	UNIV CAT	COU RSE COD E	COURSE TITLE	L	Т	P	С
	1	BS C	skill develo pment	ETM A105 A	APPLIED MATHEMA TICS-I	3	1	0	4	1	BS C	skill develop ment	ETM A104 A	APPLIED MATHEM ATICS-II	3	1	0	4
	2	BS C	skill develo pment	ETPH 109A	ENGINEERI NG PHYSICS	3	1	0	4	2	ES C	skill develop ment	ETCS 104A	INTRODU CTION TO COMPUTE R SCIENCE AND PROGRA MMING IN PYTHON	3	1	0	4
FIR ST	3	МС	skill develo pment	UCES 125A	ENVIRONM ENTAL STUDIES	3	0	0	3	3	BS C	skill develop ment	ETC H119 A	ENGINEE RING CHEMIST RY	3	1	0	4
	4	ES C	Open Electi ve	ETEC 101A	BASICS OF ELECTRICA L & ELECTRONI CS ENGINEERI NG	3	1	0	4	4	HS MC	employa bility/ entrepre neurship / skill develop ment/ Open Elective	UCC S 155A	COMMUN ICATION SKILLS	4	0	0	4
	5	ES C	skill develo pment	ETM E101 A	BASICS OF MECHANIC AL ENGINEERI NG	3	1	0	4	5	ES C	skill develop ment	ETM E 155A	ENGINEE RING GRAPHIC S LAB	0	0	3	1 . 5
	6	BS C	skill develo pment	ETPH 151A	ENGINEERI NG PHYSICS LAB	0	0	2	1	6	ES C	skill develop ment	ETCS 150A	INTRODU CTION TO COMPUTE R SCIENCE AND PROGRA	0	0	2	1

														MMING IN PYTHON LAB				
	7	ES C	Open Electi ve	ETEC 151A	BASICS OF ELECTRICA L & ELECTRONI CS ENGINEERI NG LAB	0	0	2	1	7	BS C	skill develop ment	ETC H159 A	ENGINEE RING CHEMIST RY LAB	0	0	2	1
	8	ES C	skill develo pment	ETM E151 A	BASICS OF MECHANIC AL ENGINEERI NG LAB	0	0	2	1	8	ES C	Open Elective	ETM E157 A	WORKSH OP PRACTICE S	0	0	3	1 . 5
			T	OTAL		1 5	4	6	2 2			то	TAL		1 3	3	1 0	2 1
	1	ES C	skill develo pment	ETM A201 A	APPLIED MATHEMA TICS-III	3	1	0	4	1	PC C	employa bility	ETEC 311A	MICROPR OCESSOR SYSTEMS	3	0	0	3
	2	PC C	emplo yabilit y	ETEC 233A	ANALOG ELECTRONI CS	3	0	0	3	2	PC C	employa bility	ETEE 206A	ELECTRIC AL MACHINE S	3	0	0	3
	3	PC C	emplo yabilit y	ETEC 202A	SIGNALS & SYSTEMS	3	1	0	4	3	PC C	employa bility	ETEE 208A	POWER SYSTEM-I	3	0	0	3
	4	PC C	emplo yabilit y	ETEE 201A	ELECTROM ECHANICA L ENERGY CONVERSI ON	3	0	0	3	4	PC C	employa bility	ETEC 204A	ELECTRO MAGNETI C FIELDS THEORY	3	0	0	3
	5	PC C	emplo yabilit y	ETEC 263A	ANALOG ELECTRONI CS LAB	0	0	2	1	5	PC C	employa bility	ETEE 256A	ELECTRIC AL MACHINE S LAB	0	0	2	1
SEC ON D	6	PC C	emplo yabilit y	ETEE 251A	ELECTROM ECHANICA L ENERGY CONVERSI ON LAB	0	0	2	1	6	PC C	employa bility	ETEC 353A	MICROPR OCESSOR SYSTEMS LAB	0	0	2	1
	7	МС	skill develo pment	UCD M301 A	DISASTER MANAGEM ENT	3	0	0	3	7	PC C	employa bility	ETEC 204A	ADVANCE ANALOG ELECTRO NICS	3	0	0	3
	8	PC C	emplo yabilit y	ETEC 203A	NETWORK THEORY	3	0	0	3	8	PC C	employa bility	ETEC 264A	ADVANCE ANALOG ELECTRO NICS LAB	0	0	2	1
	9	PC C	emplo yabilit y	ETEC 255A	NETWORK THEORY LAB	0	0	2	1	9	PC C	employa bility	ETEC 210A	DIGITAL ELECTRO NICS	3	1	0	4
	1 0	HS MC	skill develo pment	ETEL 285A	BUSINESS COMMUNIC ATION SKILLS-I	0	0	2	1	1 0	PC C	employa bility	ETEC 253A	DIGITAL ELECTRO NICS LAB	0	0	2	1
										1	HS MC	skill develop ment	ETEL 286A	BUSINESS COMMUN ICATION	0	0	2	1

															SKILLS-II				
			T	OTAL		1 8	2	8	2 4				ТО	TAL		1 8	1	1 0	
					LL BE FOUR WE TILL BE DONE A									ГН ЅЕМЕ	ESTER DURIN	G SU	JMN	1ER	
	1	PC C	emplo yabilit y	ETEE 301A	POWER SYSTEM-II	3	0	0	3		1	PE C	employa bility		DEPARTM ENTAL ELECTIVE	3	0	0	Ī
	2	PE C	emplo yabilit y	ETEC 314A	DIGITAL SIGNAL PROCESSIN G	3	1	0	4		2	PE C	employa bility	ETEE 404A	ELECTRIC DRIVES	3	0	0	
	3	PE C	emplo yabilit y	ETEC 360A	DIGITAL SIGNAL PROCESSIN G LAB	0	0	2	1		3	PE C	employa bility	ETEE 452A	POWER SYSTEMS SIMULATI ON LAB	0	0	2	
	4	PC C	emplo yabilit y	ETEE 362A	POWER SYSTEM LAB	0	0	2	1		4	PC C	employa bility	ETEE 403A	SWITCHG EAR AND PROTECTI ON	3	1	0	
ГНІ RD	5	PR OJ	emplo yabilit y	ETEE 351A	PRACTICAL TRAINING-I	0	0	0	1		5	PE C	employa bility	ETEC 305A	MEASURE MENT & INSTRUM ENTATIO N	3	0	0	
	6	PC C	emplo yabilit y	ETEE 316A	POWER ELECTRONI CS	3	1	0	4		6	PE C	employa bility	ETEC 355A	MEASURE MENT & INSTRUM ENTATIO N LAB	0	0	2	
	7	PC C	emplo yabilit y	ETEE 364A	POWER ELECTRONI CS LAB	0	0	2	1		7	OE C	employa bility	ETEE 401A	RENEWA BLE ENERGY SYSTEM	3	1	0	
	8	PC C	emplo yabilit y	ETEC 313A	CONTROL SYSTEM	3	1	0	4		8	HS MC	skill develop ment	ETEC 372A	QUANTAT IVE APTITUDE REASONI NG -II	0	0	2	
	9	PC C	emplo yabilit y	ETEC 358A	CONTROL SYSTEM LAB	0	0	2	1						1,0 1				
	1 0	HS MC	skill develo pment	ETEC 371A	QUANTATI VE APTITUDE REASONIN G -I	0	0	2	1										
			T	OTAL		1 2	3	1 0	2				ТО	TAL		1 5	2	6	Ī
					LL BE FOUR WE									SEMES	TER DURING	SUM	IME	R	
OU	1	PE C	emplo yabilit y	ETEE 422A	SMART ELECTRIC GRID	3	1	0	4	,, <u>,</u> ,	1	PR OJ	employa bility	ETEE 470A	INTERNS HIP	0	0	0	
RT H	2	OE C	emplo yabilit y	ETEE 425A	ELECTRIC & HYBRID VEHICLES	3	0	0	3		2								
	3	PE	emplo]	DEPARTME	3	0	0	3		3								

								1					1
5	PR OJ	emplo yabilit y	ETEE 465A	PRACTICAL TRAINING- II	0	0	0	2					
4	PR OJ	emplo yabilit y	ETEE 460A	MAJOR PROJECT	0	0	0	6	4				
	С	yabilit y		NTAL ELETIVE									

			D	EP A	AR'	ГМ	EN'	TA	LE	LECT	'IV	Έ						
1		ETEC41 2A	BIO MEDICAL ELECTRONIC S	3	0	0	3		9			ETEE40 8A	ELECTRIC TRACTION	3	0	0	3	
2		ETEC40 2A	ROBOTICS	3	0	0	3		1 0			ETEE41 0A	SWITCHED MODE POWER CONVERTE RS	3	0	0	3	
3		ETEC41 0A	SATELLITE COMMUNICA TION	3	0	0	3		1			ETEE41 3A	DESIGN OF ELECTRICA L SYSTEMS	3	0	0	3	
4		ETEC41 3A	RADAR & SONAR ENGINEERIN G	3	0	0	3		1 2			ETEE41 4A	HIGH VOLTAGE ENEGINEER ING	3	0	0	3	
5	PE C	ETEC41 4A	INTRODUCTI ON TO NANO TECHNOLOG Y	3	0	0	3		1 3	PE C		ETEE41 5A	COMPUTER METHODS IN POWER SYSTEM	3	0	0	3	
6		ETEC42 5A	DATA COMMUNICA TION NETWORKS	3	0	0	3		1 4	C		ETEE41 8A	POWER QUALITY	3	0	0	3	
7		ETEC43 0A	FUZZY LOGIC AND SYSTEMS	3	0	0	3		1 5				ETEE42 1A	POWER SYSTEM OPERATION AND CONTROL	3	0	0	3
8		ETEE40 7A	HVDC AND FLEXIBLE AC TRANSMISSI ON SYSTEMS	3	0	0	3		1 6			ETEE42 3A	PLC AND SCADA	3	0	0	3	
									1 7			ETEC31 2A	IoT ARCHITECT URE AND PROTOCOL S	3	0	0	3	

OE	OPEN ELECTIVE
CC	CORE COURSE
SE	SKILL ENHANCEMENT
DE	DEPARTMENTAL ELECTIVE

First Year (I Sem.)

ETMA105A	APPLIED MATHEMATICS-I	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. Provide the brief idea to students of Complex numbers and its applications
- 2. To understand and learn about the differential calculus and find the curve tracing.
- 3. Deliver a brief knowledge of Matrices and its properties.
- 4. Apply the concept of eigenvalue and eigenvector to find higher power of the matrix.
- 5. Recognize and find the general solution of ordinary differential equation

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand and able to apply the basic concept of complex variable.
- CO2. Recognize and able to apply the concepts of continuity and differentiability for complex functions and solve the analytic function and its properties.
- CO3. Applied the differential calculus method for curve tracing and radios of curvatures.
- CO4. Use the characteristic polynomial to compute the eigenvalues and eigenvectors of a square matrix and use them to Diagonalizable matrices when this is possible.
- CO5. Explain the qualitative long-term behaviour of the solutions to an ODE or system of ODE's.
- CO6. Demonstrate knowledge and understanding ordinary differential equations and how they relate to different modeling situations.

Catalog Description

Applied mathematics-I is the mathematical study of basic concepts, principles, and application, relate or unify various disciplines. The core of the program the following principles and their mathematical formulations: complex number and variables, ordinary differential equations, differential calculus and

matrices. The concepts of applied mathematics-I are extremely useful in physics, economics and social sciences, natural sciences, and engineering. Due to its broad range of applications, linear algebra is one of the most widely taught subjects in college-level mathematics. Important objectives of the linear algebra are to develop and strengthen the students' problem-solving skills and to teach them to read, write, speak, and think in the language of mathematics. In particular, students learn how to apply the tools of calculus to a variety of problem situations.

Course Content

Unit I: 10 lecture hours

Complex Numbers and Infinite Series: De Moivre's theorem, Roots of complex numbers, Euler's theorem, Logarithmic Functions, Circular and Hyperbolic Functions, Convergence and Divergence of Infinite series, Necessary condition for convergence, Positive term infinite series test, Alternating series, Lebnitz test, Absolute and Conditional Convergence.

Unit II: 10 lecture

hours Application of Differential Calculus: Successive differentiation, Leibnitz theorem (without proof), Taylor's and Maclaurin's theorem and expansion of functions, Asymptotes (Cartesian and polar), Curve Tracing, Curvature, Radius of Curvature.

Unit III: 10 lecture hours

Matrices and its application: Elementary transformation, Inverse of matrix by elementary operations, Rank, Linear and orthogonal transformations, Hermitian and skew - Hermitian forms, Solutions of simultaneous linear equations, Eigen values, Eigen vectors and its properties, Caley - Hamilton theorem (without proof), Diagonalisation of a matrix.

Unit IV:

hours Ordinary Differential Equations: Exact differential equations of first order and first degree, Linear differential equations of higher order with constant coefficients, Variation of parameters, Solution of simultaneous linear differential equations, Solution of homogeneous differential equations - Cauchy and Legendre forms.

Text Books

- 1. Kresyzig, "Advanced Engineering Mathematics", John Wiley and Sons.
- 2. Jain and Iyengar, "Advanced Engineering Mathematics", Narosa Publication

Reference Books/Materials

- 1. B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. H.K. Dass, "Advanced Engineering Mathematics", S. Chand & Company.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendanc	Exam	Assignment/	Exam
		e		etc.	
Weightage (%)	10	10	2	1	50
			0	0	

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and	
	POs	
	Course Outcomes (COs)	Mapped Program Outcome s
CO1	Understand and able to apply the basic concept of complex variable.	PO1
CO2	Recognize and able to apply the concepts of continuity and differentiability for complex functions and solve the analytic function and its properties.	PO8
CO3	Applied the differential calculus method for curve tracing and radios of curvatures.	PO2
CO4	Use the characteristic polynomial to compute the eigenvalues and eigenvectors of a square matrix and use them to Diagonalizable matrices when this is possible.	PO4
CO5	Explain the qualitative long-term behaviour of the solutions to an ODE or	PO3
CO6	Demonstrate knowledge and understanding ordinary differential equations and how they relate to different modeling situations.	PO1

		Engi	Prob	Desi	Con	Mod	The	Envir	Ethic	Indiv	Com	Projec	Life-	Appli	Inno	Ethic
		neer						onme			munic			catio		
		ing	anal	evel	inve	tool	neer	nt		or	ation	mana	Learni	n of	n and	and
		Kno	ysis	opm	stiga	usage	and	and		team		geme	ng	Conc	Indus	Com
		wled		ent	tions		soci	sustai		work		nt and		epts	try	muni
		ge		of	of		ety	nabili				financ			Frien	catio
				solut	com			ty				e			dly	n
				ions	plex											Skills
					prob											
					lems											
Со																
urs	Course	РО	РО	РО	РО	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO1			
e	Title	1	2	3	4	103	6	107	100	10)	0	1	2	PSO	PSO	PSO
Co	1100	1	_				O					1	_	1	2	3
de																
ЕТ	Applied	3														
M	11		3	3	3				1					3		
A																
10	Mathemati															
5A	cs - I															

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETPH109A	Engineering Physics	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Waves & Optics				
Co-requisites					

Course Objectives

- 1. Learning different types of harmonic oscillators.
- 2. Understanding phenomenon of non dispersive and transverse waves in strings.
- 3. Analyzing propagation of light, geometric and wave optics.
- 4. Understanding of various laser systems.

Course Outcomes

On completion of this course, the students will be able

to:

CO1. Understand difference between different types of harmonic oscillators and can find quality factor.

CO2. Solve non-dispersive transverse and longitudinal waves equations. CO3. Analyze propagation of light, geometric and wave optics.

CO4. Design different laser source systems.

Catalog Description

This course imparts the basic concepts of waves and optics. This course enables learners to solve non-dispersive transverse and longitudinal waves equations. This course helpslearners to analyze propagation of light, geometric and wave optics. The course introduces the basic concepts about lasers and helps learners to design different laser source systems.

Course Content

UNIT-I 12 Lecture Hours

Simple harmonic motion, damped and forced simple harmonic oscillator

Mechanical and electrical simple harmonic oscillators damped harmonic oscillator: heavy, critical and light damping, energy decay in a damped harmonic oscillator, quality factor.

UNIT-II 12 Lecture Hours

Non-dispersive transverse and longitudinal waves in one dimension and introduction to dispersion

Transverse wave on a string, The wave equation on a string, Harmonic waves, reflection, and transmission of waves at a boundary. Longitudinal waves and the wave equation for them, acoustics waves and speed of sound, wave groups and group velocity.

UNIT-III 12 Lecture Hours

The propagation of light and geometric optics

Laws of reflection and refraction, Light as an electromagnetic wave and Fresnel equations, reflectance and transmittance, Brewster's angle, total internal reflection.

Wave optics

Huygens' principle, superposition of waves and interference of light by wave front splitting and amplitude splitting: Young's double slit experiment, Newton's rings. Fraunhofer diffraction from a single slit and a circular aperture, the Rayleigh criterion for limit of resolution and its application to vision: Diffraction gratings and their resolving power.

UNIT-IV 12 Lecture Hours

Lasers

Amplification of light by population inversion, different types of lasers: gas lasers (He-Ne, CO2), solid-state lasers (Ruby, Neodymium), dye lasers. Properties of laser beams: mono-chromaticity, coherence, directionality and brightness, laser speckles, applications of lasers in science, engineering and medicine.

Suggested Reference Books

- 1. Ian G. Main, Oscillations and waves in physics
- 2. H.J. Pain, The physics of vibrations and waves
- 3. E. Hecht, Optics
- 4. A. Ghatak, Optics
- 5. O. Svelto, Principles of Lasers

Modes of Evaluation: Quiz/Assignment/ Presentation/ Extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage	10	10	20	10	50
(%)					

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos	
		Mapped Program
	Course Outcomes (COs)	Outcomes
	Understand difference between different types of harmonic oscillators	
CO1	and	PO
	can find quality factor.	1
CO2	Solve non-dispersive transverse and longitudinal waves equations.	P
		O4
CO3	Analyze propagation of light, geometric and wave optics	P
		O5
CO4	Design different laser source systems.	P
		O2

ETPH	C	
E hv	i T	
J	PO1	Engineering Knowledge
٥	PO2	Problem analysis
	PO3	Design/development of solutions
)	PO4	Conduct investigations of complex
J.	PO5	Modern tool usage
	PO6	The engineer and society
	PO7	Environment and sustainability
	PO8	Ethics
	PO9	Individual or team work
	PO10	Communication
	PO11	Project management and finance
	PO12	Life-long Learning
)	וסטת	Application of Concepts
		Innovation and Industry Friendly
		Ethics and Communication Skills

1=weakly mapped

2= moderately mapped

3=strongly mapped

UCES125A	Environmental Studies	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Basics of Environment			•	•
Co-requisites					

Course Objectives

- 1. To aware the students about the environment.
- 2. To learn the students concepts and methods from ecological and physical sciences and their application in environmental problem solving.
- 3. To think across and beyond existing disciplinary boundaries, mindful of the diverse forms of knowledge and experience that arise from human interactions with the world around them.
- 4. Communicate clearly and competently matters of environmental concern and understanding to a variety of audiences in appropriate forms.

Course Outcomes

On completion of this course, the students will be able

to

- CO1. To comprehend and become responsive regarding environmental issues.
- CO2. Acquire the techniques to protect our mother earth, as without a clean, healthy, aesthetically beautiful, safe and secure environment no specie can survive and sustain.
- CO3. Enable the students to discuss their concern at national and international level with respect to formulate protection acts and sustainable developments policies.
- CO4. To know that the rapid industrialization, crazy consumerism and over-exploitation of natural resources have resulted in degradation of earth at all levels.
- CO5. Become consciousness about healthy and safe environment.

Catalog Description

This course imparts the basic concepts of environment which enable them to solve basic problems related to their surroundings. This course helps them to get an idea adverse effect of industrialization, population and degradation of natural resources on the environment. The course introduces the concepts of renewable and non-renewable resources.

Course Content

UNIT I 8 Lectures

Environment and Natural Resources:

Multidisciplinary nature of environmental sciences; Scope and importance; Need for public awareness. Land resources; land use change; Land degradation, soil erosion and desertification. Deforestation: Causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal populations.

Water: Use and over-exploitation of surface and ground water, floods, droughts, conflicts over water (international & inter-state).

Energy resources: Renewable and non- renewable energy sources, use of alternate energy sources, growing energy needs, case studies.

UNIT II 16 Lectures

Ecosystems and Biodiversity

Ecosystem: Definition and Structure and function of ecosystem; Energy flow in an ecosystem: food chains, food webs and ecological succession.

Case studies of the following ecosystems:

a) Forest ecosystem

- b) Grassland ecosystem
- c) Desert ecosystem
- d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biological diversity: genetic, species and ecosystem diversity; Biogeographic zones of India; Biodiversity patterns and global biodiversity hot spots; India as a mega-biodiversity nation; Endangered and endemic species of India; Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts, biological invasions; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity; Ecosystem and biodiversity services: Ecological, economic, social, ethical, aesthetic and Informational value.

UNIT III

15 Lectures

Environmental Pollution and Environmental Policies: Environmental pollution: types, causes, effects and controls; Air, water, soil and noise pollution Nuclear hazards and human health risks; Solid waste management: Control measures of urban and industrial waste; Pollution case studies.

Sustainability and sustainable development; Climate change, global warming, ozone layer depletion, acid rain and impacts on human communities and agriculture; Environment Laws: Environment Protection Act; Air (Prevention & Control of Pollution) Act; Water (Prevention and control of Pollution) Act; Wildlife Protection Act; Forest Conservation Act; Nature reserves, tribal populations and rights, and human wildlife conflicts in Indian context.

UNIT IV 11 Lectures

Human Communities and the Environment and Field work:

Human population growth: Impacts on environment, human health and welfare; Resettlement and rehabilitation of project affected persons; case studies; Disaster management: floods, earthquake, cyclones and landslides; Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan; Environmental ethics: Role of Indian and other religions and cultures in evironmental conservation; Environmental communication and public awareness, case studies (e.g., CNG vehicles in Delhi). Visit to an area to document environmental assets: river/ forest/ flora/fauna,

etc. Visit to a local polluted site-Urban/Rural/Industrial/Agricultural. Study of common plants, insects, birds and basic principles of identification. Study of simple ecosystems-pond, river, Delhi Ridge, etc.

Text Books

1. Kaushik and Kaushik, Environmental Studies, New Age International Publishers (P) Ltd. New Delhi.

Reference Books/Materials

1. A.K. De, Environmental Chemistry, New Age International Publishers (P) Ltd. New Delhi.

- 2. S.E. Manahan, Environmental Chemistry, CRC Press.
- 3. S.S Dara and D.D. Mishra, Environmental Chemistry and Pollution Control, S.Chand& Company Ltd, New Delhi.
- 4. R. Gadi, S. Rattan, S. Mohapatra, Environmental Studies Kataria Publishers, New Delhi.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendan	Mid Term	Presentation/	End Term
		ce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and	
	POs	
		Mapped
	Course Outcomes	Program
	(COs)	Outcomes
	The learners will be able to comprehend and become responsive regarding	
CO1	environmental issues.	PO7
	Students will acquire the techniques to protect our mother earth, as without a	
CO2	clean, healthy, aesthetically beautiful, safe and secure environment no	PO8
	specie can survive and sustain.	
	It enables the students to discuss their concern at national and international	
CO3	level with respect to formulate protection acts and sustainable	PO10
	developments policies.	
	Students come to know that the rapid industrialization, crazy consumerism	
	and	
CO4	over-exploitation of natural resources have resulted in degradation of earth at	PO6
	all levels.	
CO5	Students become consciousness about healthy and safe environment.	PO7

		neer ing	lem anal ysis	gn/d evel opm ent of solut	duct inve stiga tions of com	ern tool usag e	engi neer and soci	ron men t and	cs	vidu	muni catio n	ct mana geme nt and finan	long Lear ning	n of Conc epts	ation and Indus try Frien	s and Com muni catio
				ions	plex prob lems			У				ce				
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
UCES12 5 A	Environme n tal Studies						2	3	3		3				1	2

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETEC 101A	BASICS OF ELECTRICAL & ELECTRONICS				
	ENGINEERING	L	T	P	C
		3	1	0	4
Pre-					
requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To understand the circuit behaviour on the DC and AC supply.
- 2. To analyse the complex circuits using various theorems to resolve it to a simple circuit.
- 3. To be able to perform analysis of single-phase ac circuits consisting of combinations (series and parallel) elements
- 4. To analyse the circuit response with addition of circuit elements i.e inductor and capacitors.
- 5. To gain basic insight of semiconductors based switching and amplifying circuits, also with brief overview of working of logic gates.

Course Outcomes

On completion of this course, the students will be able to

- CO1 Understand and apply Knowledge of AC and DC Circuits in making real time projects to solve engineering difficulties.
- CO2 Determine an understanding of logic gates.
- CO3 Demonstrate the ability to identify series, parallel complex circuits. Utilization of the preliminary knowledge gained to obtain real existing power related problems.
- CO4 Create an understanding of semiconductor devices application to existing devices
- CO5 Learn the basics of electronics devices used in practical application. CO6 Able to determine waveform basics by obtaining it on analyzer devices

Catalog Description

The aim of the course is to familiarize students with complex AC and DC circuits. For better recognition and learning point of view to identify the response of circuits with addition of capacitor and inductor elements in AC and DC circuits as real time. This course consists of learning with experimental studies involved of semiconductor switches and utilization as amplifier circuits. Basic topics included are AC and DC circuits, Series and Parallel Connections, CRO introduction and utilization, AC circuits with capacitor and inductor responses, Digital logic gates, Semiconductor

introduction as BJT, MOSFET etc. along with their application to solving practical engineering problems.

Course Content

Unit I 14 Hour

Circuit Analysis: Ohm's Law, KCL, KVL Mesh and Nodal Analysis, Circuit parameters, energy storage aspects, Superposition, Thevenin's, Norton's, Reciprocity, Maximum Power Transfer Theorem, Millman's Theorem, Star-Delta Transformation. Application of theorem to the Analysis of D.C. circuits.

Unit II 12 Hour

A.C. Circuits: R-L, R-C, R-L-C circuits (series and parallel), Time Constant, Phasor representation, Response of R-L, R-C and R-L-C circuit to sinusoidal input Resonance-series and parallel R-L-C Circuits, Q-factor, Bandwidth.

Cathode Ray Oscilloscope: Basic CRO circuit (Block Diagram), Cathode ray tube (CRT) & its component

Unit III

10 Hour

Semiconductor Physics: Basic concepts, Intrinsic and extrinsic semiconductors, diffusion and drift currents.

P-N junction diode: Ideal diode, P-N junction under open-circuit and closed-circuit, Diode Current Equation, Diode Resistance, Transition and Diffusion Capacitance, Effect of Temperature, Carrier Life Time, Continuity Equation.

Special Diodes: Zener Diode, Photodiode, Light Emitting Diodes, applications of Diodes.

Unit IV 9 Hour

Digital Electronics: Boolean algebra, Truth tables of logic gates (AND, OR, NOT), NAND, NOR as universal gates

Bipolar junction transistor: Introduction to transistors: construction,transistor operations, BJT characteristics, load line, operating point, leakage currents.

Application of BJT:CB, CE configurations, Introduction to FETs and MOSFETs.

TEXT BOOKS:

- 1. D.P. Kothari & I J Nagrath, Basic Electrical Engineering, Tata McGraw Hill, New Delhi.
- 2. B L Thareja A text book of Electrical Technology
- 3. Boylestad&Nashelsky, "Electronic Devices & Circuits", Pearson Education, 10th Edition.
- 4. V. K. Mehta & Rohit Mehta, "Principles of Electronics", S. Chand Publishers, 27th Edition.

REFERENCE BOOKS:

- 1. Electrical Engineering Fundamentals, V.Del Toro
- 2. Problems in Electrical Engineering Parker Smith.S.
- 3. Sedra A S and Smith K C, "Microelectronic Circuits" 4th Ed., New York, Oxford University Press, New York.
- 4. Tocci R J and Widmer N S, "Digital Systems Principles and Applications", 8th Ed., Pearson Education India, New Delhi.
- 5. A.K. Sawhney, "A course in Electrical & Electronics Measurements & Instrumentation", Dhanpat Rai & Sons.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
	Understand and apply Knowledge of AC and DC Circuits in making	
CO1	real time projects to solve engineering difficulties.	PO1
CO2	Determine an understanding of logic gates.	PO2
CO3	Demonstrate the ability to identify series, parallel complex circuits. Utilization of the preliminary knowledge gained to obtain real existing power related problems.	PO2
	Create an understanding of semiconductor devices application to existing	
CO4	apparatuses	PO12

		ering Knowl	lem		investi gations of	dern tool usag e	engi neer and	nment	ics			manag ement	long Lear ning	ation of Conce pts	ation and Indust ry Frien dly	s and Com muni
Co urs e Co de	Cour se Title	PO1	PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO9	PO10	PO11	PO 12	PSO1	PSO 2	PSO 3
ET EC 101 A	BA SIC S O F ELE CTR ICA L & ELE CTR ON ICS EN GIN E ERI NG		3										3	3		

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETME 101A	Basics of Mechanical Engineering	L	T	P	С		
Version 1.0		3	1	0	4		
Pre-requisites/Exposure	Basics of Thermodynamics, Fluid Machinery and Power transmission						
Co-requisites							

Course Objectives: The subject expects students to achieve the following objectives.

- 1. Understanding Basic Materials and Manufacturing Processes.
- 2. Have an understanding of laws of thermodynamics and Thermodynamic processes.
- 3. Understanding working Principles of Thermal Machines and Power Transmitting Devices.
- 4. Impart knowledge of General Principles of Mechanical system.

Course Outcomes: Upon the completion of this course the students will be able to:

- CO1. Know the basics of thermodynamics and workshop machinery.
- CO2 Understand the basic knowledge of Refrigeration and Hydraulic Machinery.
- CO3. Get the knowledge about power transmission method and device with mechanical properties.
- CO4. Know the various concept about NC, CNC Machines.

Catalog Description

This course gives introductory knowledge about Thermodynamics, refrigeration, cooling, power transmission, and the basics of CNC and Hydraulic machines. It enables the students to understand the working of these systems. It also enhances the students thinking capability to calculate the efficiency and load capacity of the systems. This course is also helping students to answer fundamental questions of Mechanical Engineering at the time of the interview.

Course Content

Unit I: 12 lecture hours

Introduction to Machine Tools and Commonly used Machine Tools in a Workshop: Lathe, Shaper, Planer, Milling, Drilling, Slotter, Introduction to Metal Cutting.

Basic concept of thermodynamics: Introduction, States, Work, Heat, Temperature, Zeroth, 1st, 2nd and 3rd law of thermodynamics, Concept of internal energy, enthalpy, and entropy. Problems Properties of Steam & Steam Generator Formation of steam at constant pressure, Thermodynamic properties of Steam, use of steam tables, Measurement of dryness fraction by throttling calorimeter.

Unit II: 12 lecture hours

Refrigeration & Air-conditioning: Introduction to refrigeration and air -conditioning, Rating of refrigeration machines, Coefficient of performance, Simple refrigeration vapor compression cycle, Psychrometric charts and its use, Human comforts.

Hydraulic Turbines & Pumps: Introduction, Classification, Construction details and working of Pelton, Francis and Kaplan turbines, Specific speed and selection of turbines, Classification of water pumps and their working.

Unit III: 12 lecture

hours

Power Transmission Methods and Devices: Introduction to Power transmission, Belt, Rope, Chain and Gear drive, Types and functioning of clutches.

Stresses and Strains: Introduction, Concept & types of Stresses and strains, Poison's ratio, stresses, and strains in simple and compound bars under axial, flexure & torsional loading, Stress-strain diagrams, Hooks law, Elastic constants & their relationships.

Unit IV: 6 lecture

hours

Introduction to Manufacturing Systems: Fundamentals of Numerical Control (NC), Advantage of NC systems, Classifications of NC, Comparison of NC and CNC

Text

Books:

- 1. Elements of Mechanical Engineering R.K.RajputLakmi Pub., Delhi
- 2. Elements of Mechanical Engineering D.S.Kumar, S.K. Kataria and Sons
- 3. Engineering Thermodynamics- P.K.Nag TMH, New Delhi
- 4. Refrigeration & Air-conditioning Arora & Domkundwar, Dhanpat rai & co.pvt ltd
- 5. Workshop Technology Vol.I& II Hazra & Chaudhary, Asian Book Comp., New Delhi.
- 6. Process and Materials of Manufacture -- Lindberg, R.A. Prentice Hall of India, New Delhi.
- 7. Principles of Manufacturing Materials and Processes Campbell, J.S.- McGraw- Hill

Reference

Books/Materials:

- 1. Strength of Materials Popov, Pub. PHI, New Delhi.
- 2. Hydraulic Machines Jagdish Lal, Pub. Metropolitan, Allahabad.
- **3.** Strength of Materials G.H. Ryder, Pub. ELBS.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written

Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	id Term Presentation/	
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Know the basics of thermodynamics andworkshop machinery.	P O 1
CO2	Understand the basic knowledge of Refrigeration and Hydraulic Machinery.	P O 2
СОЗ	Get the knowledge about power transmission method and device with mechanical properties.	P O 3
CO4	Know the various concept about NC, CNC Machines.	P O 4

		neer ing	lem anal ysis	gn/d evel opm ent of solut ions	duct inve stiga tions of	ern tool usag e	engi neer and soci ety	ron men t and	cs	vidu	muni catio n	ct mana	long Lear ning	catio n of Conc epts	ation and Indus try Frien	catio
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2		PSO 2	PSO 3
UCES12 5 A	Environme n tal Studies						2	3	3		3				1	2

1=weakly mapped

2= moderately mapped

3=strongly mapped

ETPH151A	ENGINEERING PHYSICS LAB	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Physics				
Co-requisites					

Course Objectives

- 1. The abstraction from fields using the examples of the gravitational fields, with some applications
- 2. To learn how interference, diffraction and polarization of lighttake place.
- 3. Consolidate the understanding of fundamental concepts in mechanics more rigorously as needed for further studies in physics, engineering and technology.

4. Expand and exercise the students' physical intuition and thinking process through the understanding of the theory and application of this knowledge to the solution of practical problems

Course Outcomes

On completion of this course, the students will be able to

- CO1. Acquire fundamental knowledge of mechanics and able to apply on physical systems. CO2. Better insight aboutwave nature of light.
- CO3.Better understanding of data interpretation which enhances problem solving approach.
- CO4. Develop the ability to correlates the daily life phenomenon to physics using mathematical tools

Catalog Description

This course imparts the basic concepts of waves and optics. This course enables learners to solve non-dispersive transverse and longitudinal waves equations. This course helpslearners to analyze propagation of light, geometric and wave optics. The course introduces the basic concepts about lasers and helps learners to design different laser source systems.

Course Content 10-11 Hours

LIST OF EXPERIMENTS

- 1) To determine the value of acceleration due to gravity using Bar pendulum.
- 2) To determine the value of acceleration due to gravity using Kater's pendulum.
- 3) To determine the wavelength of sodium light using Newton's ring apparatus.
- 4) To determine the wavelength of prominent lines of mercury by plane diffraction grating.
- 5) To determine the refractive index of the material of the prism for the given colours (wavelengths) of mercury light with the help of spectrometer.
- 6) To determine the specific rotation of cane sugar solution with the help of half shade polarimeter.

7) To determine the wavelength of He-Ne LASER using transmission diffraction grating.

Text Books

- C. L.Arora, B.Sc Practical Physics (S Chand and Co. Ltd., New Delhi).
- ☐ Harnam Singh, Hemne P S, B.Sc. Practical Physics (S. Chand & Co).
- ☐ InduPrakash, Ramakrishna, A Text Book of Practical Physics (KitabMahal, New Delhi).

Reference Books/Materials

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	20 10	

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Acquire fundamental knowledge of mechanics and able to apply on physical systems	PO1& PO2				
CO2	Better insight aboutwave nature of light.	PO4				
CO3	Better understanding of data interpretation which enhances problem solving approach.	PO5				
CO4	Develop the ability to correlates the daily life phenomenon to physics using mathematical tools	PO6				

		eering Knowl	lem		t investig ations	dern tool usag e	engi neer and	nment	ics		ication	manag ement	long Lear ning	ation of Conce pts	ation and Indust	and Comm unicati on
Cours e Code	Cours e Title		PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO3
ETPH 151A	Engin eering Physi cs Lab		3		3	3	3							3		

2= moderately mapped

3=strongly mapped

ETEC 151A	BASICS OF ELECTRICAL &				
	ELECTRONICS ENGINEERING LAB	L	T	P	C
		0	0	2	1
Pre-requisites/Exposure				•	
Co-requisites					

Course Objectives

- 1. To understand the DC and ACcircuit behaviour by application of network theorems.
- 2. To elaborate complex signals over oscilloscope devices with reading.
- 3. To be able to perform analysis of forward and reverse V-I characteristics of diode circuits.
- 4. To analyse the BJT inbuild circuits as per practical application point of view.
- 5. To gain basic insight of truth table based logic gate decisions and to provide application based output using seven segment display.

Course Outcomes

On completion of this course, the students will be able to

CO1	Get an exposure to common electrical components and their ratings.
C02	Determines proper electrical connections as per wires of appropriate ratings.
CO3	Understand the usage of common electrical measuring instruments.
CO4	Ability to discover applications related to seven segment display type of devices

Catalog Description

The aim of the course is to acquaint the students with basics of AC and DC circuits. Identification of tools and devices to provide demonstration capabilities involved after learning AC in waveform format. Proofing of Complex AC waveform with practical circuit calculations. Basic topics included are AC and DC circuits, Cathode Ray Oscilloscope, Function Generator, LC, RL circuits, Superposition Theorems, Zener diode, Truth table verification with seven segment displays. All along with their application inreal time situations.

Course Content

- 1. To get familiar with the working knowledge of the following instruments:
 - a) Cathode ray oscilloscope (CRO)
 - b) Multimeter (Analog and Digital)
 - c) Function generator
 - d) Power supply
- 2. To measure phase difference between two waveforms using CRO. To measure an unknown frequency from Lissajous figures using CRO
- 3. To Verify the Thevenin's and Norton's theorem
- 4. To Verify the Superposition theorem
- 5. To measure voltage, current and power in an A.C. circuit by LCR impedance method
- 6. To study the frequency response curve in series and parallel R-L-C circuit
- 7. a) Plot the forward and reverse V-I characteristics of P-N junction diode
- b) Calculation of cut-in voltage c) Study of Zener diode in breakdown region
- 8. to plot and study the input and output characteristics of BJT in common-emitter configuration.
- 9. Verification of truth tables of logic gates (OR, AND, NOT, NAND, NOR).
- 10. To get familiar with the working and use of seven-segment display.

Reference Books For Lab Studies:

- 1. Electrical Engineering Fundamentals, V.Del Toro
- 2. Problems in Electrical Engineering Parker Smith.S.
- 3. Sedra A S and Smith K C, "Microelectronic Circuits" 4th Ed., New York, Oxford University Press,

New York.

4. Tocci R J and Widmer N S, "Digital Systems – Principles and Applications", 8th Ed., Pearson

Education India, New Delhi.

5. A.K. Sawhney, "A course in Electrical & Electronics Measurements & Instrumentation", Dhanpat Rai & Sons.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
	Get an exposure to common electrical components and their	
CO1	ratings.	PO1
	Determines proper electrical connections as per wires of appropriate	
CO2	ratings.	PO2
	Understand the usage of common electrical measuring	
CO3	instruments.	PO2
	Ability to discover applications related to seven segment display type of	
CO4	devices	PO12

		neeri	em analy sis	Desig n/dev elopm ent of soluti ons	invest igatio	rn tool usage	engi neer and socie	Envir onme nt and sustai nabilit y	S	idual	munic ation	_	long Learn ing	ation of Conce pts	and Industr	and Comm unicati on
Course	Course															
Code	Title	PO1	PO2	PO3	PO4	PO5		PO7	РО	PO9	PO1	PO1	PO1			
							6		8		0	1	2	PSO1	PSO2	PSO3
	BASIC															
	S															
	O															
	F															
	ELECT															
	R	3	2										3	3		
ETEC	ICAL															
	&															
	ELECT															
	R															
151A	ONICS															
	ENGIN															
	E															
	ERING															
	LAB															
					l		l				l	l				

2= moderately mapped

3=strongly mapped

ETME151A	Basics of Mechanical Engineering Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basic concepts of Physics				
Co-requisites					

Course Objectives

1. To calculate the Mechanical Advantage, Velocity Ratio and Efficiency of Single Start & Double Start

Worm & Worm Wheel, Differential Wheel & Axle.

- 2. To study simple screw jack and compound screw jack and determine their efficiency.
- 3. To verify the law of Moments using Parallel Force apparatus. (Simply supported type)
- 4. To evaluate the co-efficient of friction between wood and various surface (like Leather, Wood, Aluminium) on an inclined plane.
- 5. To Study Two-Stroke & Four-Stroke Diesel Engines and Petrol Engines.
- 6. To Study the vapor compression Refrigeration System and Window Room Air Conditioner.

Course Outcomes

Upon the completion of this course the students will be able to:

CO1 Understand the Mechanical Advantage, Velocity Ratio and Efficiency of various systems. CO2 Understand concepts of screw jack, friction, law of moments. CO3 Understand the Two-Stroke & Four-Stroke Diesel Engines and Petrol Engines. CO4 Get the knowledge of various Refrigeration and Air-Conditioning Systems.

Catalog Description

This course complements ETME151A. It enables and introduces the students to the study of various mechanical engineering concepts and prepares the student for further studies and better understanding of engineering subjects like Engineering Thermodynamics, strength of materials and theory of machines, etc. through practical exposure.

List of Experiments (Indicative)

1	To verify the law of Force Polygon.	2 lab hours
	To verify the law of Moments using Parallel Force apparatus.	
2	(Simply supported type)	2 lab hours
	To determine the co-efficient of friction between wood and various	
3	surface (like Leather, Wood, Aluminum) on an inclined plane.	2 lab hours
4	To find the forces in the members of Jib Crane.	2 lab hours
	To determine the mechanical advantage, Velocity ratio and	
5	efficiency of a screw jack.	2 lab hours
	To determine the mechanical advantage, Velocity ratio and	
6	Mechanical efficiency of the Wheel and Axle	2 lab hours
7	To verify the law of moments using Bell crank lever.	2 lab hours

8	To calculate the Mechanical Advantage, Velocity Ratio and Efficiency of Single Start, Double Start and Triple Start Worm & Worm Wheel.	3 lab hours
9	To Study Two-Stroke & Four-Stroke Diesel Engines.	2 lab hours
10	To Study Two-Stroke & Four-Stroke Petrol Engines.	2 lab hours
11	To Study the vapor compression Refrigeration System.	2 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand the Mechanical Advantage, Velocity Ratio and	
	Efficiency of	PO1
	various systems.	
CO ₂	Understand concepts of screw jack, friction, law of moments.	
		PO4
CO3	Understand the Two-Stroke & Four-Stroke Diesel Engines and	
	Petrol	
	Engines.	PO5
CO4	Get the knowledge of various Refrigeration and Air- Conditioning	
	Systems	PO2

		neeri ng	em analy sis	gn/de velop ment of soluti ons		ern tool usag e	engi neer and	ronm	s	idual	munic ation	t	long Learn ing	Conce pts	ation and Indust	and Com munic ation
Course Code	Course Title		PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETME 151A	Basics of Mechanical Engineering Lab	2	2		3	3								3		

2= moderately mapped

3=strongly mapped

First Year (II Sem.)

ETMA104A	APPLIED MATHEMATICS-II	L	T	P	C
Version 1.0		3	1	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. Provide the brief idea to students of Laplace transformation.
- 2. To understand Curl, divergence and gradient with their applications and have the idea of directional derivatives and derive the equations of tangent planes and normal lines.
- 3. Apply the Green, Stoke and Gauss Theorem to find the area and volume of the object.
- 4. Recognize and implement the concept of differential equations and learn various methods to solve ordinary differential equations
- 5. Apply the method of characteristics to solve first order partial differential equations.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand and able to apply the basic concept of Laplace transform.
- CO2. Recognize and able to apply the concepts of vector function, vector field, scalar field, gradient, divergence and curl.
- CO3. Demonstrate the Green, Stoke and Gauss Theorem to find the area and volume of the object in real world.
- CO4. Learn the concepts of orthogonally diagonalise symmetric matrices and quadratic forms.
- CO5. Determine and find Extend the concept of series solutions to solve differential equations and learn orthogonality about the functions.
- CO6. Demonstrate knowledge and understanding partial differential equations and how they relate to different modeling situations.

Catalog Description

Applied mathematics-II is the mathematical study of general scientific concepts, principles, and phenomena that, because of their widespread occurrence and application, relate or unify various disciplines. The core of the program the following principles and their mathematical formulations: Linear transformation, partial differential equations, ordinary differential equations and vector calculus. The concepts of applied mathematics- II are extremely useful in physics, economics and social sciences, natural sciences, and engineering. Due to its broad range of applications, linear algebra is one of the most widely taught subjects in college-level mathematics. Important objectives of the linear algebra are to develop and strengthen the students' problem-

solving skills and to teach them to read, write, speak, and think in the language of mathematics. In particular, students learn how to apply the tools of calculus to a variety of problem situations.

Course Content

Unit I: 09 lecture hours

Laplace Transformation: Existence condition, Laplace transform of standard functions, Properties, Inverse Laplace transform of functions, Convolution theorem, solving linear differential equations using Laplace transform. Heaviside unit step function, Impulse function, Periodic function and their transforms.

Unit II: 10 lecture hours

Vector Calculus: Scalar and vector point functions, Gradient, Divergence, Curl with their physical significance, Directional derivatives, Properties, Line integrals, Surface integrals and Volume integrals, Gauss theorem, Green's theorem and Stoke's theorem (without proof).

Unit III: 10 lecture hours

Ordinary Differential Equations: Exact differential equations of first order and first degree, Linear differential equations of higher order with constant coefficients, Variation of parameters, Solution of simultaneous linear differential equations, Solution of homogeneous differential equations - Cauchy and Legendre forms.

Unit IV: 10 lecture hours

Partial Differential Equations and its applications: Formation of partial differential equations, Lagrange's linear equation, Charpit's method of non-linear partial differential equations, Method of separation of variables, Solution of wave and heat conduction equations, Initial and boundary value problems.

Text Books

- 1. Kresyzig, "Advanced Engineering Mathematics", John Wiley and Sons.
- 2. Jain and Iyengar, "Advanced Engineering Mathematics", Narosa Publication

Reference Books/Materials

- 1. B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- **2.** H.K. Dass, "Advanced Engineering Mathematics", S. Chand & Company.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20 10		50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand and able to apply the basic concept of Laplace transform.	PO1
CO2	Recognize and able to apply the concepts of vector function, vector field, scalar field, gradient, divergence and curl.	PO8
CO3	Demonstrate the Green, Stoke and Gauss Theorem to find the area and volume of the object in real world.	PO2
CO4	Learn the concepts of orthogonally diagonalise symmetric matrices and quadratic forms.	PO4
CO5	Determine and find Extend the concept of series solutions to solve differential equations and learn orthogonally about the functions.	PO3
CO6	Demonstrate knowledge and understanding partial differential equations and how they relate to different modelling situations.	PO1

		neeri	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie ty	ronm	S	idual	munic ation	t	long Learn ing	Conce pts	ation and Indust ry	and Com
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETMA104A	Applied Mathematics - II	2	3	2	3				2					3		

2= moderately mapped

3= strongly mapped

ETCS104A	INTRODUCTION TO COMPUTERS AND PROGRAMMING IN PYTHON	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Advanced of Computer communication				
Co-requisites					

Course Objectives

- 1. Provide an understanding of the role computation can play in solving problems.
- 2. Master the fundamentals of writing Python scripts.
- 3. Learn core Python scripting elements such as variables and flow control structures.
- 4. Discover how to work with lists and sequence data.
- 5. Position students so that they can compete for projects and excel in subjects with programming components.

Course Outcomes

On completion of this course, the students will be able to

CO 1 To learn the syntax and semantics of Python programming language CO 2 To use the structural programming approach in solving the problem. CO 3 To use the object oriented programming approach in solving problems CO 4 To handle exceptions gracefully CO 5 To develop searching and sorting algorithms

Catalog Description

Introduction to Computer and Programming in Python is intended for students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems and to help students, regardless of their major, feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use the Python 3.5 programming language.

UNIT I 12 LECTURE HOURS

Introduction to Programming: Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.)

Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm:

Flowchart / Pseudo code with examples. From algorithms to programs; source code, variables (with data types)

variables and memory locations, Syntax and Logical Errors in compilation, object and executable code

UNIT II 8 LECTURE HOURS

Introduction to Python: The basic elements of python, Branching Programs, Control Structures, Strings and Input, Iteration, String Manipulation, Guess and Check, Approximations, Bisection, Functions, Scoping and Abstraction: Functions and scoping, Specifications, Recursion, Global variables, Modules, Files

UNIT III 10 LECTURE HOURS

Classes and Object: Oriented Programming: Abstract Data Types and Classes, Inheritance, Encapsulation and

Information Hiding, Handling Exceptions, Decorators

UNIT IV 10 LECTURE HOURS

Simple Algorithms and Data structures: File Handling, Search Algorithms, Sorting, Algorithms, Hash Tables

TEXT BOOKS:

1. John V Guttag. "Introduction to Computation and Programming Using Python", Prentice Hall of India

Reference Books

- 1. R. Nageswara Rao, "Core Python Programming", Dreamtech
- 2. Wesley J. Chun. "Core Python Programming, Second Edition", Prentice Hall
- 3. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", Wiley
- 4. Kenneth A. Lambert, "Fundamentals of Python,First Programs", CENGAGE Publication

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendan	Mid Term	Presentation/	End Term
		ce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	Mapping between COs and POs									
	Course Outcomes (COs)	Mapped Program Outcomes								
	To learn the syntax and semantics of Python programming									
CO1	language	PO1, PO2								
	To use the structural programming approach in solving the									
CO2	problem.	PO3, PO4								
	To use the object oriented programming approach in solving problems									
CO3		PO10								
	To handle exceptions gracefully									
CO4		PSO1								
	To develop searching and sorting algorithms									
CO5		PSO2								

		ering Knowl	lem		t investig ations	dern tool usag e	engi neer and	nment	ics		ication	manag ement	long Lear ning	ation of	ation and	
Cours	Course	DO 1	DO	PO3	PO4	DO	DO	PO7	Р	DO0	PO10	DO11	РО			
e Code	Course Title	PO1	PO 2	rus	1 YU4	PO 5	PO 6	PU/	O 8	PO9	POIU	PO11	12	PSO1	PSO 2	PSO
ETCS 104A	Introdu ction to Compu ter Scienc e and Progra mming in Python		2	2	2						2			3	3	

2= moderately mapped

3=strongly mapped

ETCH119A	Engineering Chemistry	L	T	P	C
Version 1.0		3	1	0	4
Pre-requisites/Exposure	12 th Standard Chemistry				
Co-requisites					

Course Objectives:

To acquire knowledge of engineering materials and about fuels.
To develop the interest among the students regarding chemistry andtheir applications in engineering.
To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering.
To develop confidence among students about chemistry, how the knowledge of chemistry is applied in technological field.
To acquire knowledge about desalination of brackish water and treatment of municipal water.
To gain the knowledge of conducting polymers, bio-degradable polymers and fiber reinforced plastics.

Course Outcomes:

CO1: Develop the understanding of Technology involved in improving quality of water for its industrial use. CO2: Identify instrumental techniques for analysis and analyze the quality parameters of chemical fuels.

CO3: Develop the understanding of Chemical structure of polymers and its effect on their various properties when used as engineering materials.

CO4: Impart the knowledge of fuels and biofuels with its properties and applications.

CO5: Illustrate the principles involved in thermodynamics and kinetic theory of gases which are used in daily life.

CO6: They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.

Catalog Description

This course gives an introduction to chemistry of water and an overview of different methods used for purification of water using various inorganic and organic compounds with detection of major and minor ions present in water. Various techniques used for preparation of fuels, biofuels and techniques used for analysis are reviewed. The purpose of this course is to develop a strong foundation in the principles and methods to understand the kinetic theory of gases, thermodynamics, phase rule, polymer and biopolymers. There will be an excursion at the end of the semester.

Unit I: 16 lecture hours

Water Technology: Introduction and characteristics of water; Hardness and its determination (EDTA method only); Alkalinity and its determination; Boiler feed water; Boiler problems - scale, sludge, priming & foaming, their causes & prevention; Caustic embrittlement & corrosion -Causes & prevention; Removal of silica & dissolved gases; Water softening processes: Lime - soda process, Ion exchange method, carbonate & phosphate conditioning, colloidal conditioning & calgon treatment; Water for domestic use.

Unit II: 12 lecture hours

Fuels: Classification; Calorific value of fuel and its determination; Bomb calorimeter; Boy's Gas calorimeter; Solid fuels- Proximate and ultimate analysis, High & Low temperature carbonization, manufacture of coke (Otto-Hoffmann oven); Liquid Fuels - Petroleum-Chemical composition, fractional distillation, Thermal & catalytic cracking, Octane & Cetane No. and its significance; Power a lcohol, Analysis of flue gases (Orsat's apparatus).

Unit III: 12 lecture hours

Gaseous state and thermo chemistry: Gas laws and kinetic theory of gases; Distribution of molecular velocities; Mean free path; Real gases-non ideal behavior; Causes of deviation from ideal behavior; Vander Waal's equation; liquefaction of gases.

Hess's Law; Heat of Reaction; Heat of dilution; Heat of Hydration; Heat of neutralization and Heat of Combustion; Effect of temperature on heat of reaction at constant pressure (Kirchhoff's equation); Flame Temperature

Unit IV: 10 lecture hours

The phase rule and polymers: Definition of various terms, Gibb's Phase rule, Application of phase rule to one component system. The water system and carbon dioxide system, Two component system:Lead-silver,Na2SO4-water.

Polymers and its classification; Mechanism of addition and condensation polymers; Coordination polymerization; Synthesis, properties and uses of urea formaldehyde, phenol formaldehyde, poly vinyl acetate and polythene; Conducting and bio-polymers.

Text Books

- 1. Chemistry in Engineering & Technology (Vol I & II) (Latest ed.), By J.C. Kuriacose& J. Rajaram
- 2. Principles of Physical Chemistry, (Latest ed.), Puri B.R., Sharma L.R. and Pathania, M.S.
- 3. Text book of Engg. Chemistry, S. Chand & Co., (Latest ed.), S.S. Dara

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	nce Exam Assign		Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Develop the understanding of Technology involved in improving qualityof water for its industrial use.	PO2
CO2	Identify instrumental techniques for analysis and analyze the qualityparameters of chemical fuels.	PO1
CO3	Develop the understanding of Chemical structure of polymers and itseffect on their various properties when used as engineering materials.	PO6
CO4	Impart the knowledge of fuels and biofuels with its properties and applications.	PO7
CO5	Illustrate the principles involved in thermodynamics and kinetic theory of gases which are used in daily life.	PO3
CO6	They can predictpotential applications of chemistry and practical	PO1
	order to become goodengineers and entrepreneurs	

		ering Knowl	lem		t investig ations	dern tool usag e	engi neer and	nment	ics		ication	manag ement	long Lear ning	ation of Conce pts	ation and Indust	Ethics and Commun ication Skills
Cours e Code	Cours e Title		PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO9	PO10	PO11	PO 12	PSO1	PSO 2	PSO3
ETCH 119A	Engin eering Chemi stry		3	2			3	2						3	3	

2= moderately mapped

3=strongly mapped

UCCS 155A	Communication Skills	L	T	P	C
Version 1.0		4	0	0	4
Pre-requisites/Exposure					
Co-requisites	1				

Course Objectives

- 1. Understand the basics of Grammar to improve written and oral communication skills.
- 2. Understand the correct form of English with proficiency
- 3. Improve student's personality and enhance their self-confidence.

- 4. Improve professional communication.
- 5. Enhance academic writing skills.

Course Outcomes

- On completion of this course, the students will be able to
- CO1. Understand the basics of Grammar to improve written and oral communication skills
- CO2. Understand the correct form of English with proficiency
- CO3. Improve student's personality and enhance their self-confidence
- CO4. Improve professional communication
- CO5. Enhance academic writing skills

Catalog Description

This learning program with its practice-based learning tasks will facilitate the learners to enhance their communication skills in a modern and globalized context, enhance their linguistic and communicative competence and hone their interpersonal skills.

Course Content

UNIT I 10 lecture hours

Introduction to Communication: Importance of Communication Skills, Meaning, Forms & Types of Communication; Process of Communication; Principles of Effective Communication/7Cs, Barriers in Communication (Interpersonal, Intrapersonal and Organizational).

UNIT II 10 lecture hours

Academic Writing: Précis (Summary – Abstract – Synopsis – Paraphrase – Précis: Methods), Letter & Résumé (Letter Structure & Elements – Types of letter: Application & Cover - Acknowledgement – Recommendation – Appreciation – Acceptance – Apology – Complaint – Inquiry). Writing a proposal and synopsis. Structure of a research paper. Citations and plagiarism.

UNIT III 10 lecture hours

Technology-Enabled Communication: Using technology in communication tasks, E-mails, tools for constructing messages, Computer tools for gathering and collecting information; Different virtual medium of communication.

UNIT IV 10 lecture hours

Building Vocabulary: Word Formation (by adding suffixes and prefixes); Common Errors; Words Often Confused; One word substitution, Homonyms and Homophones; Antonyms &Synonyms, Phrasal Verbs, Idioms & Proverbs (25 each); Commonly used foreign words(15 in number);

UNIT V 10 lecture hours

Personality Development: Etiquettes& Manners; Attitude, Self-esteem & Self-reliance; Public Speaking; Work habits (punctuality, prioritizing work, bringing solution to problems), Body Language: Posture, Gesture, Eye Contact, Facial Expressions; Presentation Skills/ Techniques.

Text book [TB]:

1. Kumar, Sanjay and Pushplata. Communication Skills. Oxford University Press, 2015.

Reference Books/Materials

- 1. Mitra, Barun K. Personality Development and Soft Skills. Oxford University Press, 2012.
- 2. Tickoo, M.L., A. E.Subramanian and P.R.Subramaniam.Intermediate Grammar, Usage and Composition. Orient Blackswan, 1976.
- 3. Bhaskar, W.W.S., AND Prabhu, NS., "English Through Reading", Publisher: MacMillan, 1978
- 4. Business Correspondence and Report Writing" -Sharma, R.C. and Mohan K. Publisher: Tata McGraw Hill1994
- 5. Communications in Tourism & Hospitality-Lynn Van Der Wagen, Publisher: HospitalityPress
- 6. Business Communication-K.K.Sinha
- 7. Essentials of Business Communication By Marey Ellen Guffey, Publisher: ThompsonPress
- 8. How to win Friends and Influence People By Dale Carnegie, Publisher: Pocket Books
- 9. Basic Business Communication By Lesikar&Flatley, Publisher Tata McGraw Hills
- 10. Body Language By Allan Pease, Publisher SheldonPress

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
	Understand the basics of Grammar to improve written and oral	
CO1	communication skills	PO10
	Understand the correct form of English with proficiency	
CO2		PO10
	Improve student's personality and enhance their self-confidence	
CO3		PO12
CO4	Improve professional communication.	PO10
	Enhance academic writing skills	
CO5		PO10

		ering Knowl	lem		t investig ations	dern tool usag e	engi neer and	nment	ics		ication	manag ement	long Lear ning	ation of Conce pts	ation and Indust	
Cours e Code	Cours e Title	PO1	PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO9	PO10	PO11	PO 12	PSO1	PSO 2	PSO3
ETCH 119A	Engin eering Chemi stry		3	2			3	2						3	3	

2= moderately mapped

3=strongly mapped

ETME155A	Engineering Graphics Lab	L	T	P	С
Version 1.0		0	0	3	1.5
Pre-requisites/Exposure	Basic concepts of drawing				
Co-requisites					

Course Objectives

The Basic aim of this subject is to: -

- 1. Learn to sketch and take field dimensions.
- 2. Learn to take data and transform it into graphic drawings.
- 3. Learn basic Auto Cad skills and learn basic engineering drawing formats.
- 4. Prepare the student for future Engineering positions for designing.

Course Outcomes

Upon the completion of this course the students will be able to:

CO1. To know and understand the conventions and the method of engineering drawing. CO2. Interpret engineering drawings using fundamental technical mathematics.

CO3. Construct basic and intermediate geometry, to improve their visualization skills so that they can apply this skill in developing new products.

CO4. To improve their technical communication skill in the form of communicative drawings and to comprehend the theory of projection.

Catalog Description

This course covers the fundamentals of engineering graphics including the drawing of orthographic, isometric, and auxiliary projections. Other topics include scaling, sectioning, dimensioning, and drawing documentation. This course uses the latest release of computer-aided design (CAD) software commonly used in industry to introduce students to CAD interface,

structure, and commands.

List of Experiments (Indicative)

	To understand Drawing Instruments and their uses, Dimensioning, line	
1	conventions and free hand practicing.	3 lab hours
	To learn basics of AUTO CAD, layout of the software, standard tool	
2	bar/menus and description of most used tool bars, navigational tools.	3 lab hours
	To understand the co -ordinate system and reference planes, HP, VP,	
	RPP & LPP, creation of 2D/3D environment, selection of drawing size	
	and scale, commands and creation of lines, co-ordinate points, axes, poly	
3	lines, square, rectangle, polygons, sp lines, circles, ellipse, text, move,	3 lab hours
	copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves,	
	constraints.	
	To understand Orthographic Projections, Planes of projection, reference	
4	line and conventions employed, Projections of points in all the four	3 lab hours
	quadrants.	
	To understand Projections of straight lines (located in First quadrant/first	
5	angle only), True and apparent lengths, True and apparent inclinations to	3 lab hours
	reference planes.	
	To understand the projections of plane surfaces such as triangle, square,	
6	rectangle, rhombus, pentagon, hexagon, and circle.	3 lab hours
	To understandProjections of Solids such as right regular tetrahedron,	
7	hexahedron (cube), prisms, pyramids, cylinders, and cones in different	3 lab hours
	positions.	
	To understand about the Sections and Development of Lateral Surfaces of	
8	Solids.	3 lab hours
	To Study Apparent shapes and True shapes of Sections of right regular	
9	prisms, pyramids, cylinders, and cones having base on Horizontal Plane.	3 lab hours
	To study and draw Isometric projection of simple plane figures such as	
10	tetrahedron, hexahedron(cube).	3 lab hours
	To draw the isometric projection of right regular prisms, pyramids,	
11	cylinders, cones, spheres, cut spheres.	3 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs	
	Mapped Program
Course Outcomes (COs)	Outcomes

	To know and understand the conventions and the method of	
CO1	engineering	PO1
	drawing.	
	Interpret engineering drawings using fundamental technical	
CO2	mathematics.	PO2
	Construct basic and intermediate geometry, to improve their	
CO3	visualization	PO3
	skills so that they	
	To improve their technical communication skill in the form	
CO4	of	PO5
	communicative drawings and to	

		eering Know ledge	ble m	solutions	ct investi gations	der n tool usa	engi neer and	nment and	hic s		nication	t manag ement	- long Lear	cation of Conc epts	vatio n and Indus	
Co urs e Co de	e	PO1	PO 2	PO3	PO4	P O5		PO7	P O 8	PO 9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO3
ET M E 15 5A	eerin g Grap	3	2	3		3								3		

2= moderately mapped

3=strongly mapped

ETCS150A	INTRODUCTION TO COMPUTERS AND	L	T	P	С
	PROGRAMMING IN PYTHON LAB				
Version 1.0		0	0	2	1
Pre-	Practical learning				
requisites/Exposure					
Co-requisites					

Course Objectives

Master the fundamentals of writing Python scripts.

Learn core Python scripting elements such as variables and flow control structures. Discover how to work with lists and sequence data.

Position students so that they can compete for projects and excel in subjects with programming components.

Course Outcomes

On completion of this course, the students will be able to

CO 1 To learn the syntax and semantics of Python programming language

CO 2 To use the structural programming approach in solving the problem.

CO 3 To use the object oriented programming approach in solving problems

CO 4 To handle exceptions gracefully

CO 5 To develop searching and sorting algorithms

Course Content

List of Experiments

1	Develop programs to implement list	2 lab hours
2	Develop programs to implement Dictionary	2 lab hours
3	Develop programs to implement tuples	2 lab hours
4	Develop programs to understand the control structures of python	2 lab hours
5	Develop programs to implement function with stress on scoping	2 lab hours
6	Develop programs to implement classes and objects	2 lab hours
7	Develop programs to implement exception handling.	2 lab hours

	Develop programs to implement linear search and binary search.	
8		2 lab hours
	Develop programs to implement insertion sort	
9		2 lab hours
	Develop programs to implement bubble sort.	
10		2 lab hours
	Develop programs to implement quick sort.	
11		2 Labs
	Develop programs to implement heap sort.	
12		2 Labs

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs										
	Course Outcomes (COs)	Mapped Program Outcomes									
CO1	To learn the syntax and semantics of Python programming language	PO2									
	To use the structural programming approach in solving the										
CO2	problem.	PO3									
	To use the object oriented programming approach in										
CO3	solving	PO5									
	problems										
CO	To handle exceptions gracefully										
4		PSO1									
	To develop searching and sorting algorithms	PO9									

		Knowl	lem anal	Design/dev elopment of solutions	investig	dern tool usag e	The engi neer	and	ics	Indivi dual or team work		manag ement	long Lear ning	ation of Conce pts	Innov ation and	Ethics and Commun ication Skills
Cours e Code	Course Title	PO1	PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO9	PO10	PO11	PO 12	PSO1	PSO 2	PSO
ETCS 150A	Introdu ction to comput ers and progra mming in python Lab		2	3		3				3				3		

2= moderately mapped

3=strongly mapped

ETCH159	Engineering Chemistry Lab	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

Course Objectives

To acquaint the students with practical knowledge of the basic phenomenon/concepts of											
chemistry, the student face during course of their study in the industry and engineering field.											
To understand and explain scientifically the various chemistry related problems in											
the industry/engineering and develop experimental skills for building technical competence.											
To enable the learners to get hands-on experience on the principles discussed in theory sessions											
and to understand the applications of these concepts in engineering.											

Course Outcomes

On completion of this course, the students will be able

to

CO1: Analyze & generate experimental

skills.

CO2: Enhance the thinking capabilities in the modern trends in Engineering & Technology.

CO3: Learn and apply basic techniques used in chemistry laboratory for small/large scale water analyses/purification.

CO4: Utilize the fundamental laboratory techniques for analyses hardness/ alkalinity of water.

CO5: Employ the basic techniques used in chemistry laboratory for analyses such as volumetric titrations, conductometric, and stalagmometer.

CO6: Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.

Catalog Description

This course covers the simple synthesis method of resin using polymers. The course gives introduction and hand on experience of analysis of alkalinity/ dissolved oxygen/ hardness of water in an analytical way. An overview of volumetric titration and conductometric titration has been introduced.

List of Experiments (Indicative)

1	Determine the percentage composition of sodium hydroxide in the given mixtureof sodium	2 lab hours
	hydroxide and sodium chloride.	
	Determine the amount of Oxalic acid and Sulphuric acid in one liter of	
2	solution, given	2 lab hours
	standard sodium hydroxide and Potassium Permanganate.	
3	Determine the amount of copper in the copper ore solution, provided hyposolution.	2 lab hours
4	Argent metric titration one each by Vohlard's method and by Mohr's method.	2 lab hours
5	Complexometric titrations.	2 lab hours
6	Determine the heat of neutralization of strong acid with strong base.	2 lab hours
7	Determine the surface tension of a liquid using drop weight method.	2 lab hours
8	Determine viscosity of a given liquid (density to be determined).	2 lab hours
9	Determine the reaction rate constant for the Ist order reaction.	2 lab hours
10	Determine the cell constant of a conductivity cell.	2 lab hours
11	Find out strength of given solution of HClconductometric ally.	2 lab hours
12	Preparation of urea formaldehyde and phenol formaldehyde resins.	2 lab hours
13	Determination of dissolved oxygen in the given sample of water.	2 lab hours
14	Determination of alkalinity in the given sample of water.	3 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Analyze & generate experimental skills.	PO12							
CO2	Enhance the thinking capabilities in the modern trends in Engineering &	PO1							
	Technology.								
CO3	Learn and apply basic techniques used in chemistry laboratory for small/large	PO3							
	scale water analyses/purification.								
CO4	Utilize the fundamental laboratory techniques for analyses hardness/alkalinity	PO2							
	of water.								
CO5	Employ the basic techniques used in chemistry laboratory for analysessuch as	PO5							
	volumetric titrations, conductometric, and stalagmometer.								
CO6	Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.	PO9							

		Engi	Probl	Desi	Cond	Mod	The	Envi	Ethic	Indiv	Com	Projec	Life-	Appli	Innov	Ethics
		neeri	em	gn/d	uct	ern	engi	ronm	S	idual	munic	t	long	cation	ation	and
		ng	analy	evelo	invest	tool	neer	ent		or	ation	mana	Learn	of	and	Com
		Kno	sis	pme	igatio	usag	and	and		team		geme	ing	Conce	Indust	munic
		wled		nt of	ns of	e	socie	susta		work		nt and		pts	ry	ation
		ge		solut	comp		ty	inabi				financ			Frien	Skills
				ions	lex			lity				e			dly	
					probl											
					ems											
Course																
Code	Course Title	PO1	PO2	PO3	PO4	PO	РО	РО	PO	РО	PO1	PO1	PO1			
						5	6	7	8	9	0	1	2	PSO	PSO	PSO
														1	2	3

	Engineering										
ETCH159	Chemistry	3			2						
	Lab		3	2			3		3	3	3

2= moderately mapped

3=strongly mapped

ETME157A	Workshop Practice		T	P	С
Version 1.0		0	0	3	1.5
Pre-requisites/Exposure	Basic of mechanical engineering				
Co-requisites					

Course Objectives

The objective of this course is to develop:

- 1. Understanding different manufacturing techniques and their relative advantages / disadvantages with respect to different applications
- 2. The selection of a suitable technique for meeting a specific fabrication need
- 3. Acquire a minimum practical skill with respect to the different manufacturing methods and develop the confidence to design & fabricate small components for their project work and also to participate in various national and international technical competitions.

Course Outcomes

Upon the completion of this course the students will be able to:

- CO1.Introduction to different manufacturing methods in different fields of engineering
- CO2. Practical exposure to different fabrication techniques
- CO3. Creation of simple components using different materials
- CO4.Exposure to some of the advanced and latest manufacturing techniques being employed in the industry.

Catalog Description

This course is intended to expose engineering students to different types of manufacturing/ fabrication processes, dealing with different materials such as metals, ceramics, plastics, wood, glass etc. While the actual

practice of fabrication techniques is given more weight age, some lectures and video clips available on different methods of manufacturing are also included.

List of Experiments (Indicative)

	To introduce various shops and common tools used with their safety	
1	precautions	3 lab hours
2	To make T-joint in carpentry shop	3 lab hours
3	To make Bridal-joint in carpentry shop	3 lab hours
4	To make Double V-Butt joint in welding shop	3 lab hours
5	To make Lap joint in welding shop	3 lab hours
	To make saw - cut filling V-cut taper at the corners, circular cut in fitting	
6	shop.	3 lab hours
7	To fit square in square, triangle in square using fitting hand tools.	3 lab hours
	To Study various types of welding and perform Arc welding and Oxy-	
8	Acetylene Welding.	3 lab hours
9	To Study about the micrometer and vernier caliper.	3 lab hours
10	To Study about the various machine tools.	3 lab hours
11	To make jobs by using various machine tools.	3 lab hours

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	esentation/ End Term	
			Exam	Projects/ etc.	Exam	
Weightage (%)	10	10	20	10	50	

Mapping between COs and POs

	(Co., (CO.)	Mapped Program
	Course Outcomes (COs)	Outcomes
	Introduction to different manufacturing methods in different fields	
CO1	of	PO1
	engineering	
	Practical exposure to different fabrication techniques	
CO2		PO4
	Creation of simple components using different materials	
CO3		PO5
	Exposure to some of the advanced and latest manufacturing	
CO4	techniques	PO2
	being employed in the industry.	

		neeri ng	em analy sis	gn/de velop ment of soluti ons		ern tool usag e	engi neer and socie ty	ronm ent and	S	idual	munic ation		long Learn ing	cation of Conce pts	and Indust	l and Com munic ation
Course					ems											
Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETME 157A	Workshop Practice	3		3	2	3								3		

2= moderately mapped

Second Year (III Sem.)

ETMA 201A	APPLIED MATHEMATICS - III	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basic of Mathematics				
Co-requisites					

Course Objectives

- 1. Obtain the Fourier series and Fourier transform for a given function
- 2. Evaluate real integrals using residue theorem
- 3. Express analytic functions in terms of Taylor's series and Laurent series
- 4. Calculate complex line integrals and some infinite real integrals using Cauchy's integral theorem or residue calculus
- 5. Express any periodic function in term of sines and cosines
- 6. Analyze one dimensional wave and heat equation

Course Outcomes

On completion of this course, the students will be able to

- CO1. Obtain the Fourier series and Fourier transform for a given function
- CO2. Evaluate real integrals using residue theorem
- CO3. Express analytic functions in terms of Taylor's series and Laurent series.
- CO4. Calculate complex line integrals and some infinite real integrals using Cauchy's integral theorem or residue calculus.
- CO5. Express any periodic function in term of sines and cosines
- CO6. Analyze one dimensional wave and heat equation

Catalog Description

The construction of mathematical models to address real-world problems has been one of the most important aspects of each of the branches of engineering and technology. The first part of this module extends the theory of Fourier series and Fourier integral transform. The second part of the module covers a complex variable which includes complex variable, analytic function, Cauchy-Riemann equations, and Residue theorem with their application.

Course Content

Unit I: 8 lecture hours

Fourier series and its applications: Euler's formulae, Dirichlet's conditions, Change of interval, Fourier expansion of even and odd functions, Fourier expansion of square wave, Rectangular wave; Saw-toothed wave; half & full rectified wave functions, Harmonic analysis.

Unit II: 12 lecture hours

Fourier integrals and Transforms: Fourier integral theorem, Fourier sine integral, Fourier cosine integral, Fourier sine Transform, Fourier cosine transform, Fourier transform and its properties, Finite Fourier sine transform, Finite Fourier cosine transform, Fourier transforms of derivatives.

Unit III:

12 lecture hours Complex

Numbers and Functions of Complex Variables: De Moivre's theorem, Roots of complex numbers, Euler's theorem, Logarithmic Functions, Circular and Hyperbolic Functions, Limit, Continuity and Derivatives of complex functions, Cauchy-Riemann equations, necessary and sufficient conditions for a function to be analytic, polar form of the Cauchy-Riemann equations.

Harmonic functions, application to flow problems

Unit IV:

8 lecture hours Complex

Integration and Conformal mapping: Standard mappings (linear, square, inverse and bilinear), Complex line integral, Cauchy's integral theorem, Cauchy's integral formula, Zeroes and Singularities, Taylor series, Laurent's series, Calculation of residues, Residue theorem,

Application of residue theorem to solve real integrals.

Text Books

- 1. Kresyzig, "Advanced Engineering Mathematics", John Wiley and Sons.
- 2. Jain and Iyengar, "Advanced Engineering Mathematics", Narosa Publication.

Reference Books/Materials

- 1. B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. H.K. Dass, "Advanced Engineering Mathematics", S. Chand & Company.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Obtain the Fourier series and Fourier transform for a given function	PO1
CO2	Evaluate real integrals using residue theorem	PO2
CO3	Express analytic functions in terms of Taylor's series and Laurent series.	PO3
	Calculate complex line integrals and some infinite real integrals using	
CO4	Cauchy's integral theorem or residue calculus.	PO4
CO5	Express any periodic function in term of sines and cosines	PSO1
CO6	Analyze one dimensional wave and heat equation	PO1

		neeri	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie ty	ronm	S	idual	munic ation	t	long Learn ing	Conce pts	ation and Indust	and Com munic ation
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETMA201A	Applied Mathematics - III	2	3	3	3									2		

2= moderately mapped

ETEC233A	ANALOG ELECTRONICS	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

To understand operation of semiconductor devices.
To understand DC analysis and AC models of semiconductor devices.
To apply concepts for the design of Regulators and Amplifiers
To verify the theoretical concepts through laboratory and simulation experiments.
To implement mini projects based on concept of electronics circuit concepts

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Understand the current voltage characteristics of semiconductor devices.
- CO2. Analyze dc circuits and relate ac models of semiconductor devices with their physical Operation.
- CO3. Design and analyze of electronic circuits.
- CO4. Evaluate frequency response to understand behaviour of Electronics circuits.
- CO5. Observe the effect of positive feedback and able to design and working of different oscillators.
- CO6. Develop the skill to build, and troubleshoot Analog circuits.

Catalogue Description

The course is to provide knowledge of Analog Electronics to students of various engineering disciplines. The course module includes basic diodes, basic knowledge of transistors and its biasing techniques and stabilization.

Course Content

UNIT I 8 lecture hours

Semiconductor Diodes and Rectifiers: Types of semiconductors, energy band diagrams, ideal diode, DC & AC resistance, drift & diffusion currents, transition & diffusion capacitance, reverse recovery time, temperature effects. Some Special Devices: P-N junction diode, zener diode, Light emitting diode, Tunnel Diode, Photodiodes. Rectifiers: Half-Wave Diode Rectifiers, Full-Wave Rectifier, Clippers and clampers circuits

UNIT II 8 lecture hours Bipolar

junction transistor: Introduction, transistor operations & characteristics, CB, CE, CC configurations, comparisons of different configurations, load line concept, leakage currents, modes of

operations, Eber-moll's model, transistor applications: as a Switch and Amplifier. Bias stabilization: Need for stabilization, fixed Bias, emitter bias, self-bias, bias stability with respect to variations in Ico, VBE & β , Stabilization factors.

UNIT III 6 lecture hours

Small signal amplifiers: Hybrid model for transistor at low frequencies, RC coupled amplifiers, frequency response, gain & impedance.

UNIT IV 4 lecture hours

Field Effect Transistor: Introduction to JFET, MOSFET, FET Biasing, FET characteristics.

Text Books:

1. Boylestad & Nashelsky, "Electronic Devices & Circuit Theory" PHI – VI Edition

Reference Books:

- 1. Sedra & Smith, "Micro Electronic Circuits" Oxford University Press.
- 2. Salivahanan, Suresh Kumar, Vallavaraj, "Electronic devices and circuits" TMH.
- 3. J. Millman and Halkias, "Integrated Electronics" TMH.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
	Understand the current voltage characteristics of semiconductor	
CO1	devices.	PO4
	Analyze dc circuits and relate ac models of semiconductor devices	
CO2	with their physical Operation.	PO1
CO3	Design and analyze of electronic circuits.	PSO1
	Evaluate frequency response to understand behaviour of Electronics	
CO4	circuits.	PSO2
	Observe the effect of positive feedback and able to design and	
CO5	working of different oscillators.	PO3
CO5	Develop the skill to build, and troubleshoot Analog circuits	PO2

		neeri	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie ty	ronm ent and	S	idual	munic ation	t	long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC233A	Analog Electronics	3	2	2	2									3	3	

1=weakly mapped

2= moderately mapped

ETEC202A	SIGNALS & SYSTEMS	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure					
Co-requisites					

Course Objective:

Be able to describe signals mathematically and understand how to perform mathematical
operations on signals
Be familiar with commonly used signals such as the unit step, ramp, impulse function,
sinusoidal signals and complex exponentials.
Be able to classify signals as continuous-time vs. discrete-time, periodic vs. non-periodic,
energy signal vs. power signal, odd vs. even, conjugate symmetric vs anti-symmetric
Be able to compute the output of an LTI system given the input and the impulse response
through convolution sum and convolution integral.

Course Outcomes:

CO1 Represent and classify various types of signals and systems.

CO2 Analyze the spectral characteristics of continuous-time and discrete time signals using

Fourier analysis and will be able to find Fourier transform for different signals.

CO3 Classify systems based on their properties and determine the response of LTI systems.

CO4 Analyze the system properties based on impulse response and Fourier analysis.

CO5 Apply the Laplace transform and Z-Transform for analyse of continuous time and discrete time signals and systems.

CO6 Understand the process of sampling and the effects of under sampling.

Catalog Description:

The objective of the course is to provide brief methodologies for analysis of Signals and Systems to the engineering students. The course module includes introduction of signals and their elementary operations, Laplace and Fourier analysis, Systems and their analysis and Z-Transform.

UNIT – I Lecture Hours: 10

Types of signals and Elementary operations: Signal Classification: Deterministic and Stochastic, discrete and continuous signals, analog and digital signals, periodic and a periodic, energy and power signals, causal and non-causal signals, one dimensional and multidimensional signals etc., impulse

functional sequences, analog and discrete, singular functions. Signal representation in terms of singular functions, orthogonal functions and their use in signal representation.

UNIT – II Lecture Hours: 10

Laplace and Fourier analysis: Fourier series, Fourier and Laplace transforms: properties and applications, Signal characterization using fourier and Laplace transform, Convolution theorem: geometrical interpretation and applications. Discretization of Analog Signals: sampling, sampling theorem and its proof. Effect of under Sampling, recovery of analog signals from sampled signal: reconstruction formula.

UNIT – III Lecture Hours: 12

Z-Transform: Introduction and properties of Z-transform, Methods of Z-inversion: Inverse Ztransform by Partial fraction, long-division method and C-R Theorem, Applications of Ztransform. System Classification: linear and non-linear, time invariant and time varying, lumped and distributed, Deterministic and Stochastic. Casual and non-causal, Analog and Discrete/Digital, memory and memory less, 1 port and N – port, SISO, SIMO, MISO, MIMO.

UNIT – IV Lecture Hours: 12

System Modeling: System Models in terms of differential, equations, state variables, difference equations and transfer functions. System Analysis: Linear time invariant system properties, elementary idea of response determination to deterministic and stochastic signals. Elementary concept of impulse response.

TEXT BOOKS

- 1. Simon Haykins "Signal & Systems", Wiley Eastern
- 2. REFERENCE BOOKS 1. I J NAGRATH, R. RANJAN, "Signal and Systems", TMH, New Delhi.
 - 2. Simon Haykin & Barry Van Veen, "Signals and Systems", John Wiley &Son.

3. A.V.Oppenheim, A.S.Willsky &A. Nawab, "Signals and Systems" Pearson Education

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Represent and classify various types of signals and systems.	PSO1
CO2	Analyze the spectral characteristics of continuous-time and discrete time signals using	PO4, PSO1
CO3	Classify systems based on their properties and determine the response of LTI systems.	PO1, PSO1
CO4	Analyze the system properties based on impulse response and Fourier analysis.	PO4
CO5	Apply the Laplace transform and Z-Transform for analyses of continuous time.	PO1
CO6	Understand the process of sampling and the effects of under sampling.	PO2

	Engin	Pro	Design/de	Condu	Мо	The	Enviro	Et	Indi	Commu	Projec	Life	Appli	Inno	Ethics
	eering	ble	velopment	ct	der	engi	nment	hic	vidu	nication	t	-	catio	vatio	and
	Know	m	of	investi	n	neer	and	S	al or		mana	long	n of	n and	Commu
	ledge	anal	solutions	gation	tool	and	sustai		team		geme	Lear	Conc	Indu	nication
		ysis		s of	usa	soci	nabilit		work		nt and	ning	epts	stry	Skills
				compl	ge	ety	y				financ			Frien	
				ex							e			dly	
				proble											
				ms											

Cour																
se	Cour	PO1	PO	PO3	PO4	P	PO	PO7	P	PO	PO10	PO1	PO			
Code	se		2			О	6		O	9		1	12	PSO	PS	PSO3
	Title					5			8					1	O2	
	Engi															
ETC	neeri	3	3	2			3	2						3	3	
H119	ng															
A	Che															
	mistr															
	у															

2= moderately mapped

3=strongly mapped

ETEC204A	ELECTROMAGNETIC FIELD THEORY	L	Т	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					-
Co-requisites					

COURSE OBJECTIVE

	The aim of this subject is to acquire the knowledge of Electromagnetic field theory that allows
	the student to have a solid theoretical foundation to be able in the future to design emission,
	propagation and reception of electro- magnetic wave systems.
П	To identify formulate and solve fields and electromagnetic wayes propagation problems

☐ To identify, formulate and solve fields and electromagnetic waves propagation problems in a multidisciplinary frame individually or as a member of a group.

☐ To provide the students with a solid foundation in engineering fundamentals required to solve problems and also to pursue higher studies.

COURSE OUTCOME

CO1: Ability to solve the problems in different EM fields.

CO2: Ability to design a programming to generate EM waves subjected to the conditions

CO3: Applications of EM Waves in different domains and to find the time average power density

CO4: Ability to Solve Electromagnetic Relation using Maxwell Formulae

CO5: Ability to Solve Electro Static and Magnetic to Static circuits using Basic relations

CO6: Ability to analyse moving charges on Magnetic fields Ability to Design circuits using Conductors and Dielectrics

Catalog

Description:

This course updates student knowledge in the field of basic physics when applied with higher magnetism and electrical work. All basics of magnetic circuits, basic relations and charge conductors all study is carried out.

Course

Content

UNIT-I Hour: 10

Electric Field and Current: Coulomb's law ,Electric field intensity, field due to a continuous volume charge distribution, field of a line charge, field of a sheet of charge, electric flux density, Gauss's law and applications, electric potential, the dipole, current density, continuity of current, metallic conductors, conductor properties and boundary conditions, the method of images, the nature of dielectric materials, boundary conditions for perfect dielectric materials, capacitance of two wire line, Poisson's and Lap lace's equations, uniqueness theorem.

UNITH Hour: 06

Magnetic Field and Maxwell's Equation: Biot - Savart law, Ampere's law, magnetic vector potentials, force on a moving charge, differential current element, force and torque on a closed circuit, the boundary conditions, the magnetic circuit, potential energy and forces on magnetic materials. Faraday's law, Maxwell's equations in point form and integral form Maxwell's equations for sinusoidal variations, retarded potentials.

UNIT-III Hour: 08

The Uniform Plane Wave: Wave motion in free space and perfect dielectrics, plane waves in lossy dielectrics. The Pointing vector and power considerations, propagation in good conductors, skin effect, reflection of uniform plane waves, SWR.

UNIT-IV Hour: 07

Transmission Lines and Waveguides: The Transmission line equations, graphical methods, Smith chart, time- domain and frequency-domain analysis. TE, TM, TEM waves, TE and TM modes in rectangular and circular waveguides, cut-off and guide wavelength, wave impedance and characteristic impedance, dominant modes, power flow in waveguides, excitation of waveguides, dielectric waveguides.

TEXT BOOKS

- 1. M.N.O Sadiku, "Elements of Electromagnetics" Oxford University Press. REFERENCES:
- 1. David K. Chang, Field and Waves Electromagnetics, Addison Wesley.
- 2. Hayt W H, J R Buck., "Engineering Electromagnetics", Tata McGraw Hill, Fifth edition

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Scheme:

Components	CAT	Mid Term Exam	Attendance/ Class performance	End Term Exam
Weightage (%)	20	20	10	50

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Ability to solve the problems in different EM fields.	PO1
CO2	Ability to design a programming to generate EM waves subjected to the conditions	PO2
CO3	Applications of EM Waves in different domains and to find the time average power density	PSO3
CO4	Ability to Solve Electromagnetic Relation using Maxwell Formulae	PO6
CO5	Ability to Solve Electro Static and Magnetic to Static circuits using Basic relations.	PO2

Ī		Ability to analyse moving charges on Magnetic fields Ability to Design	
	CO ₆	circuits using Conductors and Dielectrics	PO1, PSO1

		Eng										_			Inno	
		inee		_			_	iron			muni				vatio	
		ring						men		al	catio					and
					stig							_	_			Com
			-		atio	_	soci			tea		ment		cepts		muni
		dge		t of			•	sust		m		and			_	catio
				solu				aina		wor		finan			Frie	
					com			bilit		k		ce			ndly	Skill
				S	plex			У								S
					pro											
					ble											
<u> </u>					ms											
Course	Course Title	DΩ	DΩ	PO	DΩ	DΩ	DΩ	PO	DΩ	РО	РО	РО	РО			
	Course Title	10	10	10	10	10	10	10	10	10	1	1	1			
Code		1	2	3	4	5	6	7	8	9	0	1	2	PS	PS	PS
Code		1	2	3	4	3	U	/	0	9	U	1	2	0	0	O
														1	2	3
														1		3
ETEC20	ELECTROMAG	2														
	N	_	3	2			2							2		
4A	ETIC FIELD						_							_		
12.2	THEORY															
	THEORI															

2= moderately mapped,

ETEE201A	ELECTRO MECHANICAL ENERGY CONVERSION	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

- 1. Explain construction and operation principle of dc motors and dc generators
- 2. Explain construction and operation principle of transformers
- 3. Explain construction and operation principle of ac generators.
- 4. Explain the construction, features and operation principle of ac motors.

Course Outcomes:

On completion of this course, the students will be able to

- **CO1** Analyse transformers in the power conversion circuits.
- **CO2** Understand and use the theory of electromechanical energy conversion to analyse actuators and simple electric machines.
- **CO3** Analyse AC machines, including motors and generators.
- **CO4** Analyse DC machines, including motors and generators.
- **CO5** Understanding of torque production in motors

Catalogue Description

Electric machines are a technology of choice in many modern energy conversion applications, including energy storage systems. Interest in machines is steady increasing due in giant half to the pliability of controls offered by trendy computers and power electronic devices. In this course design of electromechanical energy conversion is developed. Upon completion of the course, a student's engineering talent ought to contain i) associate understanding of the essential principles of static and mechanical device energy conversion, ii) information of the utilization of organization theory applied to the associate analysis of rotating devices and iii) an understanding of the steady-state and dynamic characteristics of induction, static magnet synchronous, and wound rotor synchronous machines

Course Content

UNIT I 10 Hour

Magnetic Circuit and Induction: Magnetic Circuits, Magnetic Materials and their properties, static and dynamic emfs and force on current carrying conductor, AC operation,

UNIT II 12 Hour

DC Machine: Basic theory of DC generator, brief idea of construction, emf equation, load characteristics, basic theory of DC motor, concept of back emf, torque and power equations, load characteristics, starting and speed control of DC motors, applications.

UNIT III 10 Hour

Synchronous Machine: Constructional features, Armature winding, EMF Equation, Winding coefficients, equivalent circuit and phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation Synchronous Motor: Starting methods, Effect of varying field current at different loads, V-Curves

UNIT IV 13 Hour

Three-phase Transformer & Induction Machine: Three Phase Transformer: Review of Single phase transformer. Three Phase transformer: Basics & operation. Induction Machine: Constructional features, Rotating magnetic field, Principle of operation Phasor diagram, equivalent circuit, torque and power equations, Torque- slip characteristics, no load & blocked rotor tests, efficiency, Induction generator & its applications. Introduction of Single phase Induction Motor, Repulsion motor. AC Commutator Motors: Universal motor, single phase a.c. series compensated motor, stepper motors.

TEXT BOOKS:

- D.P. Kothari & I.J.Nagrath, "Electric Machines", Tata Mc Graw HillB.Tech.
 (EEE) K.R. Mangalam University, Gurugram Scheme of Studies 2020
- 2. Ashfaq Hussain "Electric Machines" Dhanpat Rai & Company

REFERENCE BOOKS:

- 1. P.S.Bimbhra, "Electrical Machines", Khanna Publisher
- 2. Fitzerald, A.E., Kingsley and S.D. Umans "Electric Machinery", MC Graw Hill

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components		Attenda	Mid Term	Presentation/	End Term
	Quiz	nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mapping l	between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Analyze transformers in the power conversion circuits. Understand and use the theory of electromechanical	PSO1
CO2	energy conversion to analyze actuators and simple electric machines	PO1
CO3	Analyze AC machines, including motors and generators.	PO2
CO4	Analyze DC machines, including motors and generators	PO2, PO3
CO5	Understanding of torque production in motors	PO4

		eering Knowl	lem		t investig ations of	dern tool usa ge	engi neer and	nment	ics		nication	manag ement	long Lear ning	cation of Conce pts	ation and Indus try	
					comple x		ety					e			Frien dly	
					proble ms											
Cours e Code	Course Title	PO1	PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO3
ETEE 201A	ELECT RO MECHA NICAL ENERG Y CONVE RSION	3	2	2	2									3		

1=weakly mapped

2= moderately mapped

ETEC263A	ANALOG ELECTRONICS LAB	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

- 1. To understand operation of semiconductor devices.
- 2. To understand DC analysis and AC models of semiconductor devices.
- 3. To apply concepts for the design of Regulators and Amplifiers
- 4. To verify the theoretical concepts through laboratory and simulation experiments.
- 5. To illustrate the students different electronic circuit and their application in practice.
- 6. To impart knowledge on assessing performance of electronic circuit through monitoring of sensitive parameters.

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Identify relevant information to supplement to the Analog Electronic ETEC233A course.
- CO2. Set up testing strategies and select proper instruments to evaluate performance characteristics of electronic circuit.
- CO3. Choose testing and experimental procedures on different types of electronic circuit and analyse their operation different operating conditions.
- CO4. Evaluate possible causes of discrepancy in practical experimental observations in comparison to theory.
- CO5. Practice different types of wiring and instruments connections keeping in mind technical, Economical, safety issues.
- CO6. Prepare professional quality graphical presentations of laboratory data and computation of results incorporating the data analysis.

Catalogue Description:

The course is to provide knowledge of Analog Electronics to students of various engineering disciplines. The course module includes basic diodes, basic knowledge of transistors and its biasing techniques and stabilization.

Course Content

List of experiments:

1	To study and plot the characteristics of a junction diode.	
2	To study Zener diode, I-V characteristics.	
3	To study diode-based clipping and clamping circuits	
4	To study half wave, full wave and bridge rectifier with filters	3-4
5	To study the input and output characteristics of a transistor in its various	Hour
	configurations (CE and CB).	
6	To study and plot the characteristics of a JFET in its various configurations.	
7	To study and plot the characteristics of a MOSFET in its various configurations.	
8	To study various types of Bias Stabilization for a transistor.	
9	To study the gain and plot the frequency response of a single stage transistor	
	amplifier.	
10	To measure gain and plot the frequency response of double stage RC coupled	5-6 Hour
	amplifier	
11	To study Half & Full wave rectifier and measurement of ripple factor.	

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Identify relevant information to supplement to the Analog Electronic	PSO1
CO2	ETEC233A course. Set up testing strategies and select proper instruments to evaluate performance characteristics of electronic circuit.	PO2
CO3	Choose testing and experimental procedures on different types of electronic circuit and analyze their operation different operating conditions.	PO4
CO4	Evaluate possible causes of discrepancy in practical experimental observations in comparison to theory.	PO3
CO5	Practice different types of wiring and instruments connections keeping in mind technical, Economical, safety issues.	PO8
CO6	Prepare professional quality graphical presentations of laboratory data and computation of results incorporating the data analysis	PO5

	PSO PSO PSO POS POS POS POS POS POS POS	° C:	Ca cui lo deco		Problem analysis Problem	Design/development of Po	Conduct investigations Po	Modern tool usage Po		Transference to and	Ethics	المرات مسموع سامينان المانينان المانينان المانينان المانينان المانينان المانينان المانينان المانينان المانينان	Committee	District management and Di	Life loss Losseins D	Application of Concepts	Innovation and Industry	Eunes and
--	---	------	----------------	--	--------------------------	--------------------------	---------------------------	----------------------	--	---------------------	--------	--	-----------	----------------------------	----------------------	-------------------------	-------------------------	-----------

2= moderately mapped

ETEE 251A	ELECTRO MECHANICAL ENERGY CONVERSION	L	T	P	C
	LAB				
Version 1.0		0	0	2	1
Pre-					
requisites/Exposure					
Co-requisites					

Course Objectives:

	Students will learn fundamental material concerning energy and energy conversion.
	Students will perform laboratory experiments on three-phase power and common electric motors. Students will perform laboratory experiments as a team.
Course	e Outcomes:
On con	npletion of this course, the students will be able to
	Analyze Magnetic Circuits.
	Resolve Three-Phase Circuit Problems.
	Learn Single-Phase And Three-Phase Transformers.
	Analyze Basic Dc And Ac Electric Machines.
	Analyze Dc Motors.
	Analyze Synchronous Machines.

Catalogue Description

Analyze Induction Motors.

This course contributes to the engineering sciences component of the curriculum. Students learn fundamental electrical engineering science concepts related to electric machinery

Course Content

1	To obtain magnetization characteristics of a dc shunt generator	
		2 Hr.
2	To obtain load characteristics of a dc shunt generator and component generator	2 Hr.
_	(a) Cumulatively compounded (b) Differential Compounded.	
3	To obtain efficiently of a dc shunt machine using Swinburn's test.	
		2Hr.
4	To perform Hopkinson's test and determine losses and efficiently of dc machine.	2Hr.
5	To obtain speed-torque characteristics of a dc shunt motor	2Hr.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components		Attenda	Mid Term	Presentation/	End Term
	Quiz	nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs									
	Course Outcomes (COs)	Mapped Program Outcomes								
	Analyze Magnetic Circuits.									
CO1		PO1, PSO1								
	Resolve Three-Phase Circuit Problems.									
CO2		PO4, PSO1								
	Analyze Single-Phase And Three-Phase Transformers.									
CO3		PO4, PSO1								
CO4	Analyze Basic Dc And Ac Electric Machines.	PO1, PSO1								

CO5	Analyze Dc Motors	PSO2
CO6	Analyze Synchronous Machines.	PO4, PSO1
CO7	Analyze Induction Motors.	PO1, PSO1

		eerin g	ble m anal	solutions	ct investi gation	der n tool usa	engi neer and	onme nt and sustai nabilit	hic s		nication	t mana	- long Lea rnin	catio n of Conc epts	vatio n and Indu	and Commu nication Skills
Cour	_															
se	Course	PO1		PO3	PO4	P		PO7	P		PO10	PO1		PSO		PSO3
Code	Title		2			O 5	6		O 8	9		1	12	1	O2	
ETE E251 A	ELECT RO MECH ANIC AL ENER GY CONV ERSIO N LAB	2			3									3	2	

2= moderately mapped

UCDM301A	DISASTER MANAGEMENT	L	T	P	C
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

Course Objective:

To increase the knowledge and understanding of the disaster phenomenon, its different contextual
aspects, impacts and public health consequences.
Understanding of the International Strategy for Disaster Reduction (UN-ISDR) and to increase skills and abilities for implementing the Disaster Risk Reduction (DRR) Strategy.
To ensure skills and abilities to analyze potential effects of disasters and of the strategies and methods to deliver public health response to avert these effects.
To ensure skills and ability to design, implement and evaluate research on disaster.

Course Outcomes:

After completing the program, the student will able to understand

- CO1. Capacity to describe, analyze and evaluate the environmental, social, cultural, economic, legal and organizational aspects influencing vulnerabilities and capacities to face disasters.
- CO2. The course examines disaster profile of our country and illustrates the role played by various governmental and non-governmental organizations & its effective management.
- CO3. It also acquaints learners with the existing legal framework for disaster management.
- CO4. Capacity to analyze and evaluate research work on the field of emergencies and disaster while demonstrating insight into the potential and limitations of science, its role in society and people's responsibility for how it is used.

Catalog Description: This course incorporates different types of disasters so that students are well aware of the circumstances around them. We have included one project in the syllabus so that they can thoroughly study the pre & post disastrous situations as well as the role of society in these difficult situations.

6 lecture hours UNIT I Introduction to Disasters: Concept and definitions- Disaster, Hazard, vulnerability, resilience,
and risks.
Different Types of Disaster: Causes, effects and practical examples for all disasters.
 Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides etc Man-made Disaster: such as Fire, Industrial Pollution, Nuclear Disaster, Epidemic and Biological Disasters, Accidents (Air, Sea, Rail & Road), Structural failures (Building and Bridge), War & Terrorism etc.
6 lecture hours UNIT- II Disaster Preparedness and Response Preparedness
☐ Disaster Preparedness: Concept and Nature
☐ Disaster Preparedness Plan
☐ Prediction, Early Warnings and Safety Measures of Disaster.
☐ Role of Information, Education, Communication, and Training, Role of Government, International and NGO Bodies.
□ Role of IT in Disaster Preparedness
☐ Role of Engineers on Disaster Management.
☐ Relief and Recovery
☐ Medical Health Response to Different Disasters
7 lecture hours
UNIT III Rehabilitation, Reconstruction and Recovery
☐ Reconstruction and Rehabilitation as a Means of Development.
☐ Damage Assessment
☐ Post Disaster effects and Remedial Measures.
☐ Creation of Long-term Job Opportunities and Livelihood Options,
☐ Disaster Resistant House Construction
☐ Sanitation and Hygiene
☐ Education and Awareness,
☐ Dealing with Victims' Psychology,
☐ Long-term Counter Disaster Planning
☐ Role of Educational Institute.

10 lecture hours

	Disaster Management Act, 2005:
	Disaster management framework in India before and after Disaster Management Act, 2005, National Level Nodal Agencies, National Disaster Management Authority
	Liability for Mass Disaster
	Statutory liability
	Contractual liability
	Tortiousliability
	Criminal liability
	Measure of damages
	Epidemics Diseases Act, 1897: Main provisions, loopholes.
	Project Work : The project/ field work is meant for students to understand vulnerabilities and to n reducing disaster risks and to build a culture of safety. Projects must be conceived based on the phic location and hazard profile of the region where the institute is located.
Refere	nce Books:
	GovernmentfIndia,DepartmentofEnvironment,ManagementofHazardousSubstancesControl
	Act and Structure and Functions of Authority Created There under.
	Indian Chemical Manufacturers' Association & Loss Prevention Society of India, Proceedings the National Seminar on Safety in Road Transportation of Hazardous Materials: (1986).
	Author Title Publication Dr. Mrinalini Pandey Disaster Management Wiley India Pvt. Ltd.
	Tushar Bhattacharya Disaster Science and Management McGraw Hill Education (India) Pvt. Ltd.
	Jagbir Singh Disaster Management: Future Challenges and Opportunities K W Publishers Pvt. Ltd.
П	J. P. Singhal Disaster Management Laxmi Publications.
	Shailesh Shukla, ShamnaHussain Biodiversity, Environment and Disaster Management Unique
	Publications
	C. K. Rajan, NavalePandharinath Earth and Atmospheric Disaster Management: Nature and
	Manmade B S Publication
	IndianlawInstitute(UpendraBaxiandThomasPaul(ed.),MassDisastersandMultinationalLiability TheBhopalCase(1986)

In dian Law Institute, Upen dra Baxi (ed.), Environment Protection Act: An Agenda for Implementation
(1987)
A sian Regional Exchange for Prof. Baxi., Nothing to Lose But our Lives: Empower ment to Oppose
IndustrialHazardsina Transnationalworld(1989)
GurudipSingh,EnvironmentalLaw: InternationalandNationalPerspectives(1995), Lawman
(India)Pvt.Ltd.
Leela Krishnan,P, TheEnvironmentalLawinIndia, ChaptersVIII,IX andX(1999),Butterworths,
NewDelhi.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and Pos							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Capacity to describe, analyze and evaluate the environmental, social, cultural, economic, legal and organizational aspects influencing vulnerabilities and capacities to face disasters.	PS01						
CO2	The course examines disaster profile of our country and illustrates the role played by various governmental and non-governmental organizations & its effective management.	P03						
CO3	It also acquaints learners with the existing legal framework for disaster management.	P012						
CO4	Capacity to analyze and evaluate research work on the field of emergencies and disaster while demonstrating insight into the potential and limitations of science, its role in society and people's responsibility for how it is used.	P06						

		neeri ng	lem anal ysis	gn/d evel opm ent of solut ions	duct inve stiga tions of com	ern tool usag e	engi neer and soci ety	Envi ron ment and susta inabi lity	cs	vidu	muni catio n	ct mana	long Lear ning	Conc epts	ation and Indus try Frien	s & Com muni catio
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
UCDM 301A	Disaster Manage ment			2			3						2	3		

2= moderately mapped

Second Year (IV Sem.)

ETEC311A	MICROPROCESSOR SYSTEMS	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

To introduce 8085 architecture and programming in assembly language
To introduce basic concepts of interfacing memory and peripheral devices to a microprocessor.
To introduce serial and parallel bus standards.
To introduce 8051 microcontroller.
To introduce various advanced processor architectures such as 80X86, Pentium and
Multicore Processors.

Course Outcomes:

On completion of this course, the students will able to

- CO1. Understand the main components and working principals of the Intel 80x86 microprocessor and Intel 80x51 microcontroller
- CO2. Program and debug in assembly language
- CO3. Understand the memory organization and memory interfacing
- CO4. Interface a microprocessor to external input/output devices and perform
- CO5. input/output device programming in assembly
- CO6. Understand the hardware and software interrupts and their applications
- CO7. Understand the properties and interfacing of the parallel and serial port

Catalogue Description

Microprocessor is an essential course for undergraduates in the engineering program. The purpose of this course is to impart the rudiments of microprocessor and microcontroller systems. The student will be able to integrate these notions into their electronic designs for other courses where regulation can be realized via a microprocessor/controller implementation. Topics include

Semiconductor memory devices and systems, microcomputer architecture, assembly language programming, I/O programming, interface design, peripheral devices, data communications, and data acquisition systems.

Course Content

UNIT I: 10 Lecture Hours

Introduction: Evolution of microprocessors, technological trends in microprocessor development. The Intel family tree, CISC Versus RISC, Applications of Microprocessors.

8086 CPU Architecture: Introduction to 8085, 8086 Block diagram; description of data registers, address registers; pointer and index registers, PSW, Queue, BIU and EU, 8086 Pin diagram descriptions, Generating 8086 CLK and reset signals using 8284, WAIT state generation, Microprocessor BUS types and buffering techniques, 8086 minimum mode and maximum mode CPU module

UNIT II: 7 Lecture Hours

8086 Instruction Set: Instruction formats, addressing modes, Data transfer instructions, string instructions, logical instructions, arithmetic instructions, transfer of control instructions; process control instructions; Assembler directives.

8086 Programming Techniques: Writing assembly Language programs for logical processing, arithmetic processing, timing delays; loops, data conversions. Writing procedures; Data tables, modular programming, Macros

UNIT III: 06 Lecture Hours

Main Memory System Design: Memory devices, 8086 CPU Read/Write timing diagrams in minimum mode and maximum mode, Address decoding techniques, Interfacing SRAMS ROMS/PROMS. nterfacing and refreshing DRAMS, DRAM Controller – TMS4500.

UNIT IV: 6 Lecture Hours

Basic I/O Interface: Parallel and Serial I/O Port design and address decoding. Memory mapped I/O Vs Isolated I/O Intel's 8255 and 8251- description and interfacing with 8086, ADCs and DACs, types, operation and interfacing with 8086, Interfacing Keyboards, alphanumeric displays, multiplexed displays, and high power devices with 8086

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Map	Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Program Outcomes							
CO1	Understand the main components and working principals of the Intel 80x86 microprocessor and Intel 80x51 microcontroller	PO1							
CO2	Program and debug in assembly language	PO5							
CO3	Understand the memory organization and memory interfacing	PSO1							
CO4	Interface a microprocessor to external input/output devices and perform input/output device programming in assembly	PO6							
CO5	Understand the hardware and software interrupts and their applications	PO4							
CO6	Understand the properties and interfacing of the parallel and serial ports	PSO2							

	Engin	Pro	Design/de	Condu	Mo	The	Envir	Et	Indi	Commu	Projec	Life	Appli	Inno	Ethics
	eerin	ble	velopmen	ct	der	engi	onme	hic	vidu	nication	t	_	catio	vatio	and
	g	m	t of	investi	n	neer	nt and	s	al or		mana	long	n of	n	Commu
	Know	anal	solutions	gation	tool	and	sustai		team		geme	Lea	Conc	and	nication
	ledge	ysis		s of	usa	soci	nabilit		work		nt and	rnin	epts	Indu	Skills
				compl	ge	ety	У				financ	g		stry	
				ex							e			Frien	
				proble										dly	
				ms											

Co																
ur	Course	PO1	PO	PO3	PO4	P	PO	PO7	P	PO	PO10	PO1	PO			
se	Title		2			О	6		Ο	9		1	12	PSO	PS	PSO3
Co						5			8					1	O2	
de																
Е																
T	MICROP	3														
Е	ROCESS				1	3	2							2	2	
C	OR															
	SYSTEM															
31	S															
1																
A																

2= moderately mapped

3=strongly mapped

ETEC206A	ELECTRICAL MACHINES	L	T	P	C
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Must be revise with Basics Network Theorems				
Co-requisites					

COURSE OVERVIEW:

This course teaches the principles which are fundamental to AC machines. The aim of this course is to provide students with an understanding of the physical principles that governs electro-mechanical motion and transformation of electrical energy. By applying this knowledge, students learn techniques that enable them to understand operation of AC electrical machines and analyze their performance.

COURSE OBJECTIVE:

The	objectiv	e of the	course is to	provide	a brief	knowledge	of AC	machines	to studen	its of
elect	trical eng	gineering	discipline.							
The	COURCE	provides	knowledge	of Pol	v nhace	Induction	Three	nhaca tr	ancformar	and

- ☐ The course provides knowledge of Poly phase Induction, Three phase transformer and Synchronous Machines. This course will provide in detail construction and working, phasor diagram, equivalent circuit,
- □ Course carries out study of different types of tests performed on all AC machines such as thee phase Induction generator, three phase Induction motor, three phase synchronous generator, three phase synchronous motor and three phase transformers.

EXPECTED OUTCOME:

- Apply concepts of basic polyphase type motors there construction and working problems including the use of computer simulation.
- CO2 Understand the starting and speed control mechanism of induction motor.
- CO3 Apply time and speed based calculation to check speed control of motors.
- **CO4** Learn the various parameters theory responsible for rotating machines with practical application of work carried.

Catalog Description:

The objective of the course is to introduce basics of machines and to identify its characteristics. Various theories governing the action is also briefed.

UNITI Hours: 6

Poly phase Induction Machines – I: Construction features, production of rotating magnetic field, phasor diagram, equivalent circuit, torque and power equations, torque-slip characteristics, no load and blocked rotor test efficiency. Induction generator.

UNITII Hours: 7

Poly phase Induction Machines – II: Starting and speed control (with and without e.m.f. injection in the rotor circuit), deep bar and double cage induction motors, cogging and crawling. UNIT II Three Phase Transformer: Construction and working principle, three phase transformer connections and phasor groups, parallel operation, polarity test, open delta, three phase to two phase conversion (scott connection), three phase to six phase conversion, harmonics, inrush of magnetizing current. Applications of scott connection, open delta system.

UNITIII Hours: 8

Synchronous Machines I: Constructional features, armature windings, E.M.F. equation, winding coefficients, harmonics in the induced E.M.F., armature reaction, O.C. and S.C. tests, voltage regulation-Synchronous impedance method, MMF Method, Potier's triangle method and parallel operation, operation on infinite bus and cooling.

UNIT IV Hours: 8

Synchronous Machines II: Two reaction theory, power expressions for cylindrical and salient pole machines, performance characteristics. Synchronous Motor-Principle of operation, starting methods, phasor diagram torque-angle characteristics, V-curves hunting and damping, synchronous condenser, reluctance motor.

TEXT BOOKS:

- 1. M.G.Say, "Alternating Current machines", CBS Publishers.
- 2. P.S. Bimbhra, "Electric Machinery", Khanna Publishers.

REFERENCE BOOKS:

- 1. P.S. Bimbhra, "Generalized Theory of Electrical Machines", Khanna Publishers.
- 2. I.J. Nagrath and D.P. Kothari, "Electrical Machines", Tata McGraw Hill.
- 3. Ashfaq Hussain Electric Machines, Dhanpat Rai & Sons.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Scheme:

		Mid Term	Attendance/ Class	End Term
Components	CAT	Exam	performance	Exam
Weightage (%)	20	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Apply concepts of basic polyphase type motors there construction and working problems including the use of computer simulation.	PO1
	Understand the starting and speed control mechanism of induction	
CO2	motor.	PO2
	Apply time and speed based calculation to check speed control of	
CO3	motors.	PSO1
CO4	Learn the various parameters theory responsible for rotating machines with practical application of work carried.	PO4

	l				I	I					l					I
		Engin	Dro	Design/de	Condu	Mo	The	Envir	E+	Indi	Commu	Drojec	Lifo	Appli	Inno	Ethics
		_		velopmen							nication	_		catio		
				_	investi			nt and		al or		mana				Commu
		0			gation					team						nication
					_			nabilit		work		ı –				Skills
		ledge	y 515							WOIK		nt and financ	_		stry Frien	
					compl	ge	ety	У								
					ex							е			dly	
					proble											
					ms											
Cour																
se	Course	PO1	РО	PO3	PO4	P	РО	PO7	P	РО	PO10	PO1	PO			
Code			2			О	6		О			1	12	PSO	PS	PSO3
0000						5			8					1	O2	
ETE	ELEC	3														
C206			3		3									2		
A	AL															
	MAC															
	HIN															
	ES															

2= moderately mapped,

3=strongly mapped

ETEE256A	ELECTRICAL MACHINES LAB	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Must be revise with Basics Network Theorems				
Co-requisites					

COURSE OBJECTIVES:

	To learn basics of No load & Blocked rotor test on three-phase squirrel cage Induction
Motor	
	Identify Load test on single phase and three phase Induction Motor
	Execute operations related to Study of speed control of Induction Motor
	Identification of Pre-determination of voltage regulation of three phase
Alt	ternator by EMF/MMF/ZPF Method.

COURSE OUTCOMES:

- On completion of this course, the students will be able to
- **CO1** Acquire hands on experience of conducting various tests on ac machines and obtaining their performance indices using standard analytical as well as graphical methods.
- CO2 Acquire hands on experience of conducting various tests on alternators and obtaining their performance indices using standard analytical as well as graphical methods.
- Acquire hands on experience of conducting various tests on induction machines and obtaining their performance indices using standard analytical as well as graphical methods.
- **CO4** Formulation of electrodynamics equations of all electric machines and analyse the performance characteristics.
- **CO5** Knowledge of transformations for the dynamic analysis of machines.
- **CO6** Knowledge of determination of stability of the machines under small signal and transient conditions

Catalogue Description

The course provides the basics of electrical machine, as it is the major part of industries so experiments involving its controlling, testing and operations would be studied by students.

Course Content

Basic performing of lab practical enables to relate to the course contents with the practical aspect by performing the given experimental list below:

INDUCTION MACHINES

- 1. Load test on 3 phase squirrel cage/slip ring Induction Motor
- 2. No load & Blocked rotor test on 3-phase squirrel cage Induction Motor (Performance 3.determination using equivalent circuit and circle diagram)
- 3. Load test on 1 phase Induction Motor 4. Load test on 3 phase Induction Generator 5. Study of speed control of Induction Motor

SYNCHRONOUS MACHINES

1. Load test on 1/3 phase Alternator

Lab Hours: 5-6

Lab Hours: 7-8

- 2. Pre-determination of voltage regulation of 3 phase Alternator by EMF/MMF/ZPF Method.
- 3. Synchronization/parallel operation of Alternators.
- 4. V and inverted V curve of an auto synchronous motor and observation on reactive power
- 5. Determination Direct axis reactance and quadrature axis reactance of a salient pole
- 6. Alternator by slip test.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	ing between COs and POs	M
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Acquire hands on experience of conducting various tests on ac	
	machines and obtaining their performance indices using	
	standard analytical as well as graphical methods.	PO1
CO2	Acquire hands on experience of conducting various tests on	
	alternators and obtaining their performance indices using	
	standard analytical as well as graphical methods.	PO2
CO3	Acquire hands on experience of conducting various tests on	
	induction	
	machines and obtaining their performance indices using	PO3, PSO1
	standard analytical as well as graphical methods.	
CO4	Formulation of electrodynamics equations of all electric	
	machines	PO2,PSO2
	and analyse the performance characteristics.	
CO5	Knowledge of transformations for the dynamic analysis of	PO3,PO4
	machines.	100,101
CO6	Knowledge of determination of stability of the machines under	
	small	PO1, PSO2
	signal and transient conditions	

		neeri ng	lem anal ysis	gn/d evel opm ent of solut ions	duct inve stiga tions of com	ern tool usag	engi neer and soci ety	ron ment	cs	vidu	muni catio n	ct mana	long Lear ning	Conc epts	ation and Indus try Frien	s and Com muni catio
Cours e Code	Course Title ELECTRIC	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
E 256A	AL MACHINES LAB	3	3	3	2									3	2	

2= moderately mapped

ETEE208A	POWER SYSTEMS I	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

COURSE OBJECTIVE:

The aim of this course is

To introduce the concepts and phenomenon of different sources of Power Generation,
To give an idea about the fundamental concepts of electrical power distribution, both
AC & DC, to familiarize the students with the Tariff methods for electrical energy
consumption in the prospect of optimum utilization of electrical energy
To impart the knowledge of different turbines used in the generating stations with the
analytical methods.

COURSE OUTCOME:

The outcome of this course is

CO 1. Articulate power system concepts required to engineering problems.

CO 2 Design power system components for a specified system and application

CO 3 Ability to discuss various power sources for generation of power Merit/Demerits. CO 4 Formulate A.C and D.C distribution networks for necessary variable calculation. CO 5 Ability to calculate usage of electrical

power

CO 6 Ability to plot the power /Energy demand in the form of graph. CO 7 Ability to discuss functions of Substation.

Catalogue Description

Electrical Power plays significant role in day to day life of entire mankind. This course concerns the generation and distribution of power along with the economic aspects.

Course Content

UNIT I Lecture

Hours: 8

Evolution of Power Systems and Present-Day Scenario. Structure of a power system: Bulk Power Grids and Micro-grids. Generation: Conventional and Renewable Energy Sources. Distributed Energy Resources. Energy Storage. Transmission and Distribution Systems: Line

diagrams, transmission and distribution voltage levels and topologies (meshed and radial systems). Synchronous Grids and Asynchronous (DC) interconnections. Review of Threephase systems. Analysis of simple three-phase circuits. Power Transfer in AC circuits and Reactive Power.

UNIT II Lecture

Hours: 8

Overhead Transmission Lines:

Electrical and Magnetic Fields around conductors, Corona. Parameters of lines and cables. Capacitance

and Inductance calculations for simple configurations. Travelling-wave Equations. Sinusoidal Steady state representation of Lines: Short, medium and long lines. Power Transfer, Voltage profile and Reactive Power. Characteristics of transmission lines. Surge Impedance Loading. Series and Shunt Compensation of transmission lines.

UNIT III Lecture

Hours: 8

Overhead Lines Insulators: Types of insulators and their applications, potential distribution over a string of insulators, methods of equalizing the potential. Mechanical Design of Transmission Line: Catenary curve, calculation of sag and tension, effects of wing and ice loadings, sag template, vibration dampers. Insulated Cables: Types of cables, grading of cables, insulation resistance, capacitance of single phase and three phase cables, dielectric loss, heating of cables.

UNIT IV Lecture

Hours: 6

Introduction to DC Transmission & Renewable Energy Systems

DC Transmission Systems: Line-Commutated Converters (LCC) and Voltage Source Converters (VSC).

LCC and VSC based dc link, Real Power Flow control in a dc link. Comparison of ac and dc transmission. Solar PV systems: I-V and P-V characteristics of PV panels, power electronic interface of PV to the grid. Wind Energy Systems: Power curve of wind turbine. Fixed and variable speed turbines. Permanent Magnetic Synchronous Generators and Induction Generators. Power Electronics interfaces of wind generators to the grid.

TEXT BOOKS:

- 1. J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw Hill Education, 1994.
- 2. C.L. Wadhava, "Electrical Power Systems", New Age International.

- 3. M. L. Soni, P. V. Gupta and U. S. Bhatnagar, "A course in Electrical Power", Dhanpat Rai& Sons, 1st edition.
- 4. O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1995.

REFERENCE BOOKS:

- 1. S. L. Uppal, "Electrical Power", Khanna Publishers, 13th edition.
- 2. W. H. Stevension, "Elements of Power System Analysis", McGraw Hill.
- 3. Ashfaq Hussain, "Electrical Power System" CBS Publishers and Distributors

Text/References:

- 1. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc., 1999.
- 2. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 2003.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	Mapping between COs and POs					
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Articulate power system concepts required to engineering problems.	PO1				
CO2	Design power system components for a specified system and application	PO1				
CO3	Ability to discuss various power sources for generation of power Merit/Demerits.	PO2, PSO1				
CO4	Formulate A.C and D.C distribution networks for necessary variable calculation.	PO2				
CO5	Ability to calculate usage of electrical power	PO3				
CO6	Ability to plot the power /Energy demand in the form of graph.	PO4				
CO7	Ability to discuss functions of Substation.	PO4, PSO2				

ETEE	Code	
	Course	
	РО	Engineering Knowledge
	РО	Problem
	PO	Design/development
	PO	Conduct investigations of
	PO	Modern tool
	PΩ	The engineer and
	PO	Environment and
		Е
	РО	Individual or team work
	PO1	Communicati
	PO1	Project management
	PO1	Life-long
	PSO	Application of
	PSO	Innovation and
	PS O3	Ethics and

2= moderately mapped

3=strongly mapped

ETEC353A	MICROPROCESSOR SYSTEMS LAB	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites					

Course

Objectves:	
	Outline the history of computing devices.
	Describe the architecture of 8086 microprocessors.
	Develop programs for microprocessor and microcontrollers
	Compare microprocessors and microcontrollers
	Understand 8051 microcontroller concepts, architecture and programming
~	

Course **Outcomes:**

On completion of this course, the students will be able to

- **CO1**. Design and implement programs on 8085 microprocessor.
- **CO2**. Design and implement programs on 8086 microprocessor.
- CO3. Design interfacing circuits with 8085
- **CO4.** Design interfacing circuits with 8086.
- **CO5.** Design and implement 8051 microcontroller-based systems
- **CO6**. To Understand the concepts related to I/O and memory interfacing

Catalogue

Description

- 1. Familiarization with 8085 & 8086 Trainer Kit.
- 2. Familiarization with Digital I/O, ADC and DAC Cards
- 3. Familiarization with Turbo Assembler and Debugger S/Ws.
- 4. Write a program to arrange block of data in
- 5. Ascending (ii) descending order
- 6. Write a program to find out any power of a number such that Z = Xn,.

Where n is programmable and X is unsigned number.

- b. Ramp Waveform
- c. Triangular Waveform Using DAC
- 7. Write a program to measure frequency/Time period of the following functions.
 - a. Sine Waveform
 - b. Square Waveform
 - c. Triangular Waveform using ADC Card.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term	
		nce	Exam	Assignment/ etc.	Exam	
Weightage (%)	10	10	20	10	50	

	Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Design and implement programs on 8085 microprocessors.	PSO1,PO1					
CO2	Design and implement programs on 8086 microprocessors.	PSO1,PO1					
CO3	Design interfacing circuits with 8085	PO2, PSO1					
CO4	Design interfacing circuits with 8086.	PO2,PSO1					
CO5	Design and implement 8051 microcontroller-based systems	PO3,PO4					
	To Understand the concepts related to I/O and memory						
CO6	interfacing	PO4, PSO2					
	interracing						

		Engineering Knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual or team work	Communication	Project management and finance	Life-long Learning	Application of Concepts	Innovation and Industry Friendly	Ethics and Communication Skills
Cours	Course Title	P	P	P	P	P	P	Р	P	Р	PO1	PO1	PO1	PSO	PSO	PS
Code		О	О	О	О	О	О	О	О	О	0	1	2	1	2	О3
0000		1	2	3	4	5	6	7	8	9						
ETEC 353A	MICROPRO C ESSOR SYSTEM S LAB	3	2	2	2									3	3	

2= moderately mapped

ETEC203A	NETWORK THEORY	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Must be revise with Basics Network Theorems				
Co-requisites					

Course Objectives:

To explain the basic concepts and laws of DC and AC electrical networks and solve them
using mesh and nodal after successful completion of the course student will be able to apply
concepts of electric network topology, analysis techniques.
To introduce students with the fundamental concepts in graph theory.
To analyze circuits in time and frequency domain.
To explain concepts of driving point and transfer functions, poles and zeroes of network
functions and their stability.

Course Outcomes:

On completion of this course, the students will be able to

- **CO1.** Explain network elements, types of networks and network topology
- CO2. Analysis complex circuits using mesh current & amp; nodal voltage method
- **CO3.** Compute AC and DC Parameters in the circuits.
- **CO4.** Analyze RLC circuits and coupled circuits.
- **CO5.** Apply the concept of two port network in circuit analysis
- **CO6.** Explain fundamentals of filters
- **CO7.** Apply time and frequency concepts of analysis and understand various functions of network and also the stability of network.

Catalogue Description

The objective of the course is to provide brief methodologies for analysis of Electrical Circuits and Networks to the students of various engineering disciplines. The course module includes introduction of signals, Circuit theory, Two - Port Networks, Network Synthesis

UNIT I 7 Hours

Network Topology:

Principles of network topology, graph matrices, network analysis using graph theory. Transient Response: Review of properties and applications of Laplace transform; Transient Response of RC, RL, RLC Circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform.

UNIT II 8 Hours

Network Functions: Terminal pairs or Ports, Network functions for one-port and two-port networks, poles and zeros of Network functions, Restrictions on pole and zero Locations for driving point functions and transfer functions, Time domain behavior from the pole-zero plot.

UNIT III 8 Hours

Characteristics and Parameters of Two Port Networks: Relationship of two-port variables, short-circuit Admittance parameters, open circuit impedance, parameters, Transmission parameters, hybrid parameters, relationships between parameter sets, Inter-connection of two port networks, concept of transform impedance.

UNIT IV 7 Hours

Types of Filters and Their Characteristics: Filter fundamentals, high-pass, low-pass, band-pass, and band-reject Filters. **Network Synthesis:** Positive real functions, synthesis of one port and two port networks, elementary idea of Active networks.

TEXT BOOKS

□ Van Valkenburg, "Network analysis" PHI, 2000

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components Quiz		Attenda	Mid Term	Presentation/	End Term	
		nce	Exam	Assignment/ etc.	Exam	
Weightage (%) 10		10	20	10	50	

Mapp	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Explain network elements, types of networks and network topology	PO6
CO2	Analysis complex circuits using mesh current & nodal voltage method	PO1
CO3	Compute AC and DC Parameters in the circuits.	PO4
CO4	Analyze RLC circuits and coupled circuits.	PO2
CO5	Apply the concept of two port network in circuit analysis	PO3
CO6	Explain fundamentals of filters	PSO1
CO7	Apply time and frequency concepts of analysis and understand various	PO5
	functions of network and also the stability of network	

ETEC20	Code	
NETWO	Course	
2	PO1	Engineering Knowledge
2	PO2	Problem analysis
C	PO3	Design/development of solutions
S	PO4	Conduct investigations of complex
C	PO5	Modern tool usage
)	PO6	The engineer and society
	PO7	Environment and sustainability
	PO8	Ethics
	PO9	Individual or team work
	PO10	Communication
	PO11	Project management and finance
	PO12	Life-long Learning
.	D&O1	Application of Concepts
		Innovation and Industry Friendly
	BrO2	Ethics and Communication Skills

2= moderately mapped

ETEC255A	NETWORK THEORY LAB	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

To moleo	4100	aturdanta	aamahla	of and	1,,,,,,		~:	alaatmiaal	matrrianle
10 make	me	students	capable	or ana	ryzmg	any	given	electrical	network.

☐ To make the students learn how to synthesize an electrical network from a given impedance/admittance function.

Course Outcomes:

On completion of this course, the students will be able to

- **CO1** Apply concepts of electric network topology, nodes, branches, loops to solve circuit problems including the use of computer simulation.
- CO2 Understand the basic concepts of graph and analyze the basic electrical circuits using graph theory.
- CO3 Apply time and frequency concepts of analysis and understand various functions of network and also the stability of network.
- CO4 Learn the various parameters and their interrelationship, able to solve numerical with series, cascade, and parallel connection using two port parameters.

Catalogue Description

The objective of the course is to provide brief methodologies for analysis of Electrical Circuits and Networks to the students of various engineering disciplines. The course module includes introduction of signals, Circuit theory, Two - Port Networks, Network Synthesis

Course Content

A. Simulation based 4-5 Hour

	Introduction of circuit creation & simulation software like TINAPRO, P-Spice, Dr Spice/other relevant Software.
П	Transient response of RC, RL circuit on any of above software
П	To find the resonance frequency, Band width of RLC series circuit using any of above software.
	To this the resonance frequency, game whom of right series excess using any or doo to sold water
	To plot the frequency response of low pass filter and determine half-power frequency.
	To plot the frequency responses of high pass filter and determine the half-power frequency.

В.	Hardware Based 5-6 Hour
	To calculate and verify "Z" & "Y" parameters of a two port network.
	To determine equivalent parameter of parallel connections of two port network and study loading effect To calculate and verify "ABCD" parameters of a two port network.
	To synthesize a network of a given network function and verify its response

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components Quiz		Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Марр	Mapping between COs and POs							
		Mapped						
	Course Outcomes (COs)	Program						
		Outcomes						
CO1	Apply concepts of electric network topology, nodes, branches, loops to	PO1						
	solve circuit problems including the use of computer simulation.							
CO2	Understand the basic concepts of graph and analyze the basic electrical	PO2						
	circuits using graph theory.							
CO3	Apply time and frequency concepts of analysis and understand various functions of network and also the stability of network.	PO3						
	Learn the various parameters and their interrelationship, able to solve							
CO4	numerical with series, cascade, and parallel connection using two port parameters.	PO4						

				т								1		1		
	'															
	'	Engin	Prob	Design/dev	Conduc	Mo	The	Enviro	Eth	Indiv	Commu	Project	Life-	Applic	Innov	Ethics
				elopment							nication				ation	
		_		of solutions						or		ement				Commu
			ysis		_			sustain		team						nication
	'							ability		work		finance				Skills
	'				comple	_	ety			*******				1	Frien	
	'				x										dly	
					proble										ary	
					ms											
				!	1113											
	'															
	1															
Cours																
e	Cours	PO1	PO	PO3	PO4	РО	РО	PO7	P	PO9	PO10	PO11	РО			
Code	e Title		2			5	6		О				12	PSO	PSO	PSO3
									8					1	2	
	NET						<u> </u>									
ETEC		3														
255A	K		3	2	2											
	THE			_	_											
	ORY															
	L															
	A															
	В			1												1

2= moderately mapped

Version 1.0	3	1	0	4
Pre-requisites/Exposure				
Co-requisites				

Course Objectives

To acquire the basic knowledge of digital logic levels and application of knowledge to
understand digital electronics circuits.
To understand number representation and conversion between different representation in
digital electronic circuits.
To analyze logic processes and implement logical operations using combinational logic
circuits.
To understand characteristics of memory and their classification.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Create the appropriate truth table from a description of a combinational logic function.
- CO2. Create a gate-level implementation of a combinational logic function described by a truth table using and/or/not gates, multiplexers or ROMs, and analyse its timing behaviour.
- CO3. Create a state transition diagram from a description of a sequential logic function and then convert the diagram into an implementation of a finite-state machine with the appropriate combinational and sequential components.
- CO4. Describe the operation and timing constraints for latches and registers.
- CO5. Draw a circuit diagram for a sequential logic circuit and analyse its timing properties (input setup and hold times, minimum clock period, output propagation delays).
- CO6. Evaluate combinational and sequential logic designs using various metrics: switching speed, throughput/latency, gate count and area, energy dissipation and power.

Catalogue Description

This course helps the student to develop a digital logic and apply it to solve real life problems and will able to analyze, design and implement combinational logic circuits and sequential logic circuits.

Course Content		

UNIT – I 12 lecture hours

Number Systems and Codes: Review of number systems, BCD codes and arithmetic, Gray code, self- complimenting codes, Error detection and correction principles.

Digital Circuits: Switching algebra & simplification of Boolean expressions. De Morgan's Theorem.

Implementations of Boolean expressions using logic gates

Unit II: 12 lecture hours

Combinational Logic Design: Combinational circuit analysis and synthesis, Techniques for minimization of Boolean functions such as Karnaugh map, VEM and Quine-Mc Cluskey methods. Design of arithmetic circuits, code convertors, multiplexers, demultiplexers, encoders, decoders & comparators. Parity generators and checker. Introduction to Sequential Logic: Need for sequential circuits, Binary cell, Latches and flip-flops. RS, JK, Master-Slave JK, D & T flip flops.

Unit III: 10 lecture hours Synchronous

Sequential Circuit Design: Fundamentals of Synchronous sequential circuits, Classification of synchronous machines, Analysis of Synchronous Sequential circuits, Design of Synchronous and Asynchronous Counters, Shift registers & Ring counters, Analysis and design of Finite State Machines. Timing issues in synchronous circuits.

Logic Families: Performance metrics of logic gates, Basic Transistor-Transistor Logic and CMOS logic.

Unit IV: 10 lecture hours

Asynchronous Sequential Circuits: Fundamentals of Asynchronous Sequential circuits. Analysis and design of Asynchronous Sequential circuits. Pulse mode and Fundamental-mode Circuits. Cycles, Races and Hazards in asynchronous circuits.

Text Books

- 1. William I. Fletcher, —An Engineering approach to Digital Design, Prentice Hall of India
- 2. C.H.Roth, —Fundamentals of Logic Design, Thomson
- 3. Morris Mano, "Digital Design", PHI, 2nd Ed.

Reference Books/Materials

- 1. J. Nagrath, "Electronics, Analog & Digital", PHI.
- 2. B. S. Nai, "Digital Electronics and Logic Design", PHI.
- 3. Balabanian and Carlson, "Digital Logic Design Principles", Wiley Pub.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Map	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Create the appropriate truth table from a description of a combinational logic function.	PO1
CO2	Create a gate-level implementation of a combinational logic function described by a truth table using and/or/not gates, multiplexers or ROMs, and analyze its timing behavior.	PO2
CO3	Create a state transition diagram from a description of a sequential logic function and then convert the diagram into an implementation of a finite-state machine with the appropriate combinational and sequential components.	PO3
CO4	Describe the operation and timing constraints for latches and registers.	PO4
CO5	Draw a circuit diagram for a sequential logic circuit and analyze its timing properties (input setup and hold times, minimum clock period, output propagation delays). Evaluate combinational and sequential logic designs using various metrics:	PO5
CO6		PO3

		neeri	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie ty	ronm ent and	S	idual	munic ation	t	long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC210A	Digital Electronics	2	2	3	3	3								2	2	

2= moderately mapped

ETEC253A	DIGITAL ELECTRONICS LAB	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

- 1. Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs).
- 2. Design simple digital systems based on these digital abstractions, using the "digital paradigm" including discrete sampled information.
- 3. Use the "tools of the trade": basic instruments, devices and design tools.
- 4. Work in a design team that can propose, design, successfully implement and report on a digital systems project.
- 5. Communicate the purpose and results of a design project in written and oral presentations.

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Identify relevant information to supplement to the Digital Electronic ETEC210A course.
- CO2. Construct basic combinational circuits and verify their functionalities
- CO3. To understand the basic digital circuits and to verify their operation.
- CO4. To understand the concepts of flipflops, registers and counters.
- CO5. To understand how gates are the basic building blocks for digital world.

Catalogue Description:

Labs on digital logic, PALs, flip-flops, timing, counters, synchronization, and finite-state machines prepare students for the design and implementation of a final project of their choice, e.g., games, music, digital filters, wireless communications, graphics, etc. Extensive use of Verilog for describing and implementing digital logic designs. Students engage in extensive written and oral communication exercises

Course Content

List of experiments:

1	Introduction to digital electronics lab- nomenclature of digital ICs,	2 Hr
	specifications, study of the data sheet, concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.	
2	Implementation of the given Boolean function using logic gates in both SOP	1 Hr.
	and POS forms.	
3	Verification of state tables of RS, JK, T and D flip-flops using NAND & NOR	1 Hr.
	gates.	
4	Implementation and verification of Decoder/De-multiplexer and Encoder	2 Hr
	using logic gates.	
5	Implementation of 4x1 multiplexer using logic gates.	1 Hr.
6	Implementation of 4-bit parallel adder using 7483 IC.	1 Hr.
7	Design, and verify the 4-bit synchronous counter.	1 Hr.
8	Design, and verify the 4-bit asynchronous counter.	1 Hr.
9	Static and Dynamic Characteristic of NAND and Schmitt-NAND gate (both	1 Hr.
	TTL and MOS).	
10	Study of Arithmetic Logic Unit.	1 Hr.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	ponents QUIZ		Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Identify relevant information to supplement to the Digital Electronic ETEC210A course	PSO1						
CO2	Construct basic combinational circuits and verify their functionalities	PO2						

CO3	To understand the basic digital circuits and to verify their operation.	
		PO1
CO4	To understand the concepts of flipflops, registers and counters.	
		PO4
CO5	To understand how gates are the basic building blocks for digital	
		PO3
	world.	

		neeri ng	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie ty	ronm ent and	s	idual	munic ation	_	long Learn ing	cation of Conce pts	ation and Indust	Com munic ation
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC253A	Digital Electronics Lab	2	2	3	2									3		

2= moderately mapped

ETEC204A	ADVANCE ANALOG ELECTRONICS	L	Т	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure	ANALOG ELECTRONICS				
Co-requisites					

Course Objective:

In this course student will be

Introduction to multistage amplifier, its designing, hybrid modelling of various amplifiers like RC coupled amplifier.
Study of Feedback amplifiers and necessary condition for establishing feedback connections,
Study of Calculation of impedance of various feedback circuits.
Study of Various oscillator circuits like sine oscillator, RC oscillator, crystal oscillator will be studied using hybrid modelling at low and high frequencies.
Study of Calculation of resonant frequencies for studying large signal amplifiers, powers amplifiers
Study of Different types of power amplifiers like class A, B, AB and C Push-Pull amplifiers

Course Outcomes:

- **CO1.** Understand Multi stage amplification and calculation of gain.
- CO2. Importance of feedback system.
- **CO3.** Formulate hybrid model

foramplifiers.

- **CO4.** Calculation of stability parameters.
- **CO5.** Effect of negative feedback.
- **CO6.** Design an oscillatory circuit.
- **CO7.** Regulation of power supply using diodes and transistors.

Catalog Description:

This course is designed to teach and acquire a basic knowledge in solid state electronics including diodes, MOSFET, BJT, and operational amplifier. The student will develop the ability to analyze and design analog electronic circuits. Students learn how BJT work at low and high frequencies, Power amplifiers and feedback amplifiers, different types of oscillators and their working, studying of various types of tuned amplifiers. The student will be able to design amplifier circuits and also can

design amplifier circuits in the projects. Student will also be acquainted with the different types of feedback circuits and types of feedback circuit. He also gets to learn why feedback is so important in designing.

Course Content

UNIT I Hour: 6

Multistage Amplifiers: Classification of amplifiers, distortion in amplifiers, step response of an amplifier, Cascaded amplifiers, Design of multistage amplifiers, Calculation of gain Impedance and bandwidth.

UNIT II Hour: 8

Feedback amplifiers: Introduction, feedback parameters, types of feedback: negative and positive, characteristics of feedback amplifiers, input & output resistance, types of feedback connections and their analysis.

UNIT III Hour: 8

Oscillators: Sinusoidal oscillators, Barkhausen criteria, R-C oscillators, crystal oscillator, Analysis & design – crystal oscillator.

Power Supplies: Switched mode power supplies, Voltage Regulators, Introduction to Inverters, power conditioners, UPS, A.C. Voltage stabilizers

UNIT IV Hour: 8

Power amplifiers: Classification of large signal amplifiers, Analysis and design with respect to efficiency, linearity and harmonic distortions of class A, class B and AB push-pull amplifiers, single ended power amplifiers.

Text Book:

1. R.L. Boylestad & L. Nashelsky —Electronic Devices and Circuit Theory

Reference Books:

- 1. Spencer and Ghausi, Introduction to Electronic Circuit Design, Pearson Education.
- 2. Dutta, Semiconductor Devices and Circuits, Oxford University Press.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Scheme:

Components	CAT	Mid Term Exam	Attendance/ Class performance	End Term Exam
Weightage (%)	20	20	10	50

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Understand Multi stage amplification and calculation of gain.	PO1, PSO1
CO2	Importance of feedback system.	PO2
CO3	Formulate hybrid model for amplifiers.	PO3
CO4	Calculation of stability parameters.	PO4
CO5	Effect of negative feedback.	PO3, PO4
CO6	Design an oscillatory circuit.	PO1,PO 2
CO7	Regulation of power supply using diodes and transistors.	PSO1,PO 2

		Engin	Pro	Design/de	Condu	Mo	The	Enviro	Et	Indiv	Commu	Projec				
		_		velopment			_		hic	idual	nication			cation	vatio	and
		Know			investi		neer		S	or		mana				Commu
		_			gation					team						nication
			ysis					nabilit		work		nt and	_	_		Skills
					compl	ge	ety	У				financ			Frien	
					ex							e			dly	
					proble											
					ms											
Cour																
se	Cour	PO1	РО	PO3	PO4	P	РО	PO7	P	РО	PO10	PO1	РО			
Code	se		2			O5	6		О	9		1	12	PSO	PS	PSO3
	Title								8					1	O2	
	Digit															
ETE	al	2														
C253	Elect		2	3	2									3		
A	ronic															
	S															
	Lab															

2= moderately mapped

ETEC264A	ADVANCE ANALOG ELECTRONICS	L	T	P	С
	LAB				
Version 1.0		0	0	2	1
Pre-requisites/Exposure	ANALOG ELECTRONICS				
Co-requisites					

Course Objective:

- 1. To understand the importance of op-amp in various applications like Precision Rectifiers, Filters, and DAC.
- 2. To design the non-linear application of op-amp such as Schmitt circuit.
- 3. To study and design the application of 555 timer like mono-stable Multivibrator.
- 4. Familiarize the conversion of data from Analog to Digital and Digital to Analog.
- 6. Design and construct waveform generation circuits using op-amp.

Course Outcomes:

- **CO1.** Define significance of Op Amps and their importance.
- CO2. Build circuits using Analog IC's.
- CO3. In-depth knowledge of applying the concepts in real time applications.
- **CO4.** Ability to use OP Amp as Summation, Subtractor.
- **CO5.** Able to use OP Amp to generate sine, square and triangular wave forms.
- **CO6.** Able to use OP Amp as analog to digital and digital to analog converter.

Catalog Description:

This course continues investigation of single and cascaded BJT and MOSFET amplifiers. In addition, mid-band gains, impedances, and frequency responses of multi-transistor amplifiers are studied. The effects of classic feedback configurations on amplifier characteristics are included.

Course Content Hours: 10-12 To study and plot the characteristics of a junction diode. To study Zener diode I-V characteristics. To study diode based clipping and clamping circuits To study half wave, full wave and bridge rectifier with filters To study the input and output characteristics of a transistor in its various configurations (CE and CB). To study and plot the characteristics of a JFET in its various configurations. To study and plot the characteristics of a MOSFET in its various configurations. To study various types of Bias Stabilization for a transistor. To study the gain and plot the frequency response of a single stage transistor amplifier. To measure gain and plot the frequency response of double stage RC coupled amplifier

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Scheme:

To study Half & Full wave rectifier and measurement of ripple factor.

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

	Mapping between COs and Pos										
	Course Outcomes (COs)	Mapped Program Outcomes									
CO1	Define significance of Op Amps and their importance.	PO1, PO9, PSO3									
CO2	Build circuits using Analog IC's.	PO2, PO9, PSO3									

CO3	In-depth knowledge of applying the concepts in real time applications.	PSO1, PO9, PSO3
CO4	Ability to use OP Amp as Summation, Subtractor.	PO1, PO9, PSO3
CO5	Able to use OP Amp to generate sine, square and triangular wave forms.	PO1, PO9, PSO3
CO6	Able to use OP Amp as analog to digital and digital to analog converter	PSO1, PO9, PSO3

		Engi neer ing Kno wled ge	lem anal ysis	gn/d evel opm ent of solut ions	duct inve stiga tions of com	ern tool usag e	engi neer and soci	ron men t and	cs	vidu	muni catio n	ct mana	long Lear ning	Conc epts	ation and Indus try Frien	s & Com muni catio
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO	PSO 2	PSO 3
ETEC 264A	ADVANCE ANALOG ELECTRO NICS LAB	2	2							2				3		3

2= moderately mapped

Third Year (V Sem.)

ETEE 301A	POWER SYSTEM II	L	Т	P	С
V 7• 1.0		2	0	0	2
Version 1.0		3	U	U	3
Pre-requisites/Exposure					
	Power System-I				
Co-requisites					

Course

Objectives:

Sys	This introductory course begins with the simple representation of power system as per unit tem.
	A review of three-phase power calculations, the per-unit system, and phasor algebra—basic tools used in modelling and how to solve nearly all types of power system problems.
	The course is designed to earn symmetrical components and use them to calculate balanced and unbalanced short-circuit faults, and open-circuit faults on three-phase power systems.
	In addition, students will learn load flow analysis of load flow equations using Gauss Seidel, Newton Raphson and Fast Decoupled method.
	This course linked power systems for a better understanding of symmetrical components at
the	'real-world' utility level.
	The course provides an awareness to check the stability by equal area criterion

Course

Outcomes:

On completion of this course, the students will be able to

CO1. To develop mathematical model of a given power system.

CO2. To perform power flow analysis using numerical techniques.

CO3. To analyze the behavior of the power system under faulted condition.

CO4. To study the stability status of power system under steady state and transient condition

CO5. To gain practical aspects on power system analysis problems.

Catalogue Description

This course is a maiden subject in the field of electric power systems. Electric power has become progressively vital as a way of transmitting and transforming energy in manufacturing and in daily usage. Electric power systems are also at the heart of alternative energy systems, including wind and solar electric as renewable energy sources and conventional power generation from fossil fuels.

Course Content

UNIT I Lecture Hours 6

Power Flow Analysis Review of the structure of a Power System and its components. Analysis of Power Flows: Formation of Bus Admittance Matrix. Real and reactive power balance equations at a node-Load and Generator Specifications. Application of numerical methods for solution of non-linear algebraic equations —Gauss Seidel and Newton-Raphson methods for the solution of the power flow equations. Computational Issues in Large- scale Power Systems.

UNIT II Lecture Hours 8

Stability Constraints in synchronous grids Swing Equations of a synchronous machine connected to an infinite bus. Power angle curve. Description of the phenomena of loss of synchronism in a single-machine infinite bus system following a disturbance like a three-phase fault. Analysis using numerical integration of swing equations (using methods like Forward Euler, Runge-Kutta 4th order methods), as well as the Equal Area Criterion. Impact of stability constraints on Power System Operation. Effect of generation rescheduling and series compensation of transmission lines on stability.

UNIT III Lecture Hours 8

Control of Frequency and Voltage Turbines and Speed-Governors, Frequency dependence of loads, Droop Control and Power Sharing. Automatic Generation Control. Generation and absorption of reactive power by various components of a Power System. Excitation System Control in synchronous generators, Automatic Voltage Regulators. Shunt Compensators, Static VAR compensators and STATCOMs. Tap Changing Transformers. Power flow control using embedded dc links, phase shifters.

UNIT IV Lecture Hours 8

Power System Economics and Management Basic Pricing Principles: Generator Cost Curves, Utility Functions Power Exchanges Spot Pricing. Electricity Market Models (Vertically Integrated, Purchasing Agency, Whole-sale competition, Retail Competition), Demand Side-management, Transmission and Distributions charges, Ancillary Services. Regulatory framework.

Text Books:

- 1. Wadhwa C.L." Electrical Power Systems", Sixth Edition, New Age International Publishers, New Delhi.
- 2. Nagarath I.J. and Kothari D.P. "Modern Power System Analysis", Fourth Edition, Tata McGraw Hill Publishing company, New Delhi. Reference Books:
- 3. Hadi Sadat, "Power System Analysis", Tata McGraw Hill Publishing company, New Delhi.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term	
		nce	Exam	Assignment/ etc.	Exam	
Weightage (%)	10	10	20	10	50	

Mapping between COs and POs						
		Mapped Program				
	Course Outcomes (COs)	Outcomes				
CO1	To develop mathematical model of a given power system.	PSO1, PO1				
CO2	To perform power flow analysis using numerical techniques	PO2				
CO3	To analyze the behavior of the power system under faulted					
	condition	PO3				
CO4	To study the stability status of power system under steady state and transient condition	PO4				
CO5	To gain practical aspects on power system analysis problems.	PO4, PSO1				

E 3	Code	
p S	Course	
J.	PO1	Engineering Knowledge
J	PO2	Problem analysis
٥	PO3	Design/development of solutions
,	PO4	Conduct investigations of complex
	PO5	Modern tool usage
	PO6	The engineer and society
	PO7	Environment and sustainability
	PO8	Ethics
	PO9	Individual or team work
	PO10	Communication
	PO11	Project management and finance
	PO12	Life-lono Learnino
	PSO1	Application of Concepts
	PSO2	Innovation and Industry Friendly
	PSO3	Ethics and Communication Skills

2= moderately mapped

3=strongly mapped

ETEC314A	DIGITAL SIGNAL PROCESSING	L	T	P	C
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

Course Objective:

Understand basic tradeoffs in digital representation of signals: sampling rate, bandwidth, bit rate,
fidelity
Analyse minimum phase, linear phase, and all-pass discrete-time systems
Check the stability of filters

	Choose filter structures according to their performance characteristics: sensitivity, complexity, delay, etc
	Program digital signal processors to perform DSP in real-time
	Analyse and design filters based on pole/zero placement.
	Design linear phase FIR filters using windows and equip ripple technique
	Design IIR filters from continuous-time filters
	Design filters using Matlab and exploit more sophisticated design tools in Matlab
	Analyse signal spectra using DFT/FFT
	Apply FFT to filtering applications
Co	urse Outcomes:
СО	1 Classify discrete time signals/systems.
СО	2 Apply Z-transform and Fourier transform for different type of signals and systems.
СО	3 Determine the convolution of discrete time signals using graphical and analytical methods.
CO	
CO	5 Develop FFT algorithms and design of analog/digital filters.
CO	6 Compute the frequency response of digital filters and hence apply for different signal processing applications e.g. DSP processors/FPGA platform.
Cat	talog Description:
The	e main objective of this subject is to help the students to mathematically analyze different types of

The main objective of this subject is to help the students to mathematically analyze different types of signals and their associated systems. Applications of DSP include audio signal Processing, audio compression, digital image processing, video compression. With good knowledge of this subject, students can work on various real time projects.

Course Content

UNIT I 10 Lecture Hours

Discrete Transforms: Review of Z- and Inverse Z-transform and Inversion of Z-transform and solution of difference equations. Analysis of LTI systems in Z-domain, causality, stability, schurcohn stability test relationship between Z-transform and Fourier transform.

DFT and FFT Computation: Properties of DFT, Linear filtering using DFT, Frequency analysis of signals using DFT, Frequency selective filters; all pass filters, minimum phase, and maximum-phase and mixed-phase systems.

UNIT II: 9 Lecture Hours

Implementation of Discrete Time Systems: Direct form, cascade form, frequency sampling and lattice

structures for FIR systems. Direct forms, transposed form, cascade form parallel form. Lattice and lattice ladder structures for IIR systems, Quantization of filter co-efficient structures for all pass filters.

UNIT III: 10 Lecture Hours

Design of FIR Filters: Characteristics of practical frequency selective filters. Filters design and specifications: Peak pass band ripple, minimum stop band attenuation.

Design of FIR Filters using windows: Kaiser Window methods, comparison of design methods for FIR filters, Gibbs phenomenon, and design of FIR filters by frequency sampling method, design of optimum equi ripple FIR filters, alternation theorem.

UNIT IV: 11 Lecture Hours

Design of IIR Filters: Design of IIR filters from analog filters, Design by approximation of derivatives, Impulse invariance method, Bilinear transformation method, characteristics of Butterworth filters, Frequency transformation, least square methods.

Design of IIR Filters in Frequency Domain: Chebyshev, and Elliptical analog filters and their design, Frequency transformation, least square methods, design of IIR filters in frequency domain.

Text books:

☐ John G. Proakis, "Digital Signal Processing" PHI – 3rd Edition.

S. K. Mitra, "Digital Signal Processing" (PHI)

Reference books:

Johny Johnson, "Introduction to Digital Signal Processing" PHI.
Salivahan, "Digital Signal Processing", TMH

Oppenheim A.V. and Schafer R.W., "Discrete Time Signal Processing", Pearson Education.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term	
			Exam	Assignment/ etc.	Exam	
Weightage (%)	10	10	20	10	50	

	Mapping between COs and Pos	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Classify discrete time signals/systems.	PO1
	Apply Z-transform and Fourier transform for different type of signals and	
CO2	systems.	PO2
	Determine the convolution of discrete time signals using graphical and	
CO3	analytical methods.	PO3
CO4	Compute DFT/IDFT for discrete time signals and find circular convolution.	PO1
CO5	Develop FFT algorithms and design of analog/digital filters.	PSO1
CO6	Compute the frequency response of digital filters and hence apply for different signal processing applications e.g. DSP processors/FPGA platform	PSO1,PO4

ΕA	Co	
ΙξΡ	Tit	
2	1	Engineering Knowledge
	2	Problem analysis
2	3	Design/development of solutions
	4	Conduct investigations of
	5	
	6	The engineer and society
	7	Environment and sustainability
	8	Ethics
	9	Individual or team work
	0	Communication
	1	Project management and finance
	2	Life-long Learning
3	1	Application of Concepts
	2	Innovation and Industry Friendly
	3	Ethics & Communication Skills

2= moderately mapped

ETEC360A	DIGITAL SIGNAL PROCESSING LAB	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basics of Computer Programming				
Co-requisites					

- 1. Understand basic tradeoffs in digital representation of signals: sampling rate, bandwidth, bit rate, fidelity
- 2. Analyse minimum phase, linear phase, and all-pass discrete-time systems
- 3. Check the stability of filters
- 4. Choose filter structures according to their performance characteristics: sensitivity, complexity, delay, etc
- 5. Program digital signal processors to perform DSP in real-time
- 6. Analyse and design filters based on pole/zero placement.
- 7. Design linear phase FIR filters using windows and equipripple technique
- 8. Design IIR filters from continuous-time filters
- 9. Design filters using Matlab and exploit more sophisticated design tools in Matlab
- 10. Analyse signal spectra using DFT/FFT
- 11. Apply FFT to filtering applications

Course Outcomes:

- CO1 Analyze various discrete time signals.
- CO2 Examine the properties of convolution, Z transform and twiddle factors.
- CO3 Determine the circular convolution of two sequences.
- CO4 Prepare different algorithms for filtering long data Sequences.
- CO5 Compute the magnitude and phase response of Butterworth filter and FIR filter with different specifications

Catalog Description:

The main objective of this subject is to help the students to mathematically analyze different types of signals and their associated systems. Applications of DSP include audio signal Processing, audio compression, digital image processing, video compression. With good knowledge of this subject, students can work on various real time projects.

Course Content

Hands-on experiments related to the course contents ETEC 314A by performing experiments as given below:

Perform the experiments using MATLAB:

To represent basic signals (Unit step, unit impulse, ramp, exponential, sine and						
cosine).						
To develop program for discrete convolution						
To develop program for discrete correlation.						
To understand stability test.	5-6 Hours					
To understand sampling theorem.						
To design analog filter (low-pass, high pass, band-pass, band-stop). To design digital HD filters (low pass, high pass, hand pass, hand stop)						
To design digital IIR filters (low-pass, high pass, band-pass, band-stop).						
To design FIR filters using windows technique	-					
To design a program to compare direct realization values of IIR digital filter						
To develop a program for computing parallel realization values of IIR digital filter.	-					
To develop a program for computing cascade realization values of IIR digital filter.	5-6 Hours					
To develop a program for computing inverse Z-transform of a rational transfer						
function						

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Analyze various discrete time signals.	PO1
	Examine the properties of convolution, Z transform and twiddle	
CO2	factors	PO3
	Determine the circular convolution of two sequences.	
CO3		PO2
CO4	Prepare different algorithms for filtering long data Sequences.	PO4
	Compute the magnitude and phase response of Butterworth filter and	
CO5	FIR filter with different specifications	PO4

		neeri	lem anal ysis	gn/d evel opm ent of solut ions	duct inve stiga tions of com	ern tool usag e	engi neer and socie ty	ronm ent	cs	idual	muni catio n		long Learn ing	catio n of Conc epts	Indus try Frien	s & Com muni catio
Cours e Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC 360 A	DIGIT AL SIGNAL PROCE SSIN G LAB	2	2	2	2											

2= moderately mapped

3=strongly mapped

ETEE362A	POWER SYSTEM LAB	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Power System -II				
Co-requisites					

Course Objectives:

To analyse the performance of power system networks by conducting various experiments.
To study different power system protective equipment by conducting suitable experiments.
To develop computer programs for analysis of power systems

Course Outcomes:

On completion of this course, the students will be able to

Hands-on experience related to the course contents ETEE403A by performing experiments as given below: CO1. Acquire the knowledge of various abnormal conditions that could occur in power system.

- CO2. Ability to design various protective devices in power system for protecting equipment and personnel.
- CO3. Knowledge of various types of existing circuit breakers, their design and constructional details. CO4 Knowledge of various conventional relays, their design and latest developments.
- CO5. Knowledge of standards and specifications related to switchgear and protection

Catalogue Description

To analyse the various faults and protection schemes.

Course Content

List of experiments:

1. To determine direct axis reactance (xd) and quadrature axis reactance (xq) of a salient pole alternator.

Lab Hours: 10 to 11

2. To determine negative and zero sequence reactance's of an alternator.

- 3. To determine sub transient direct axis reactance (xd) and sub transient quadrature axis reactance (xq) of an alternator.
- 4. To determine fault current for L-G, L-L, L-L-G and L-L-L faults at the terminals of an alternator at very low excitation.
- 5. To study the IDMT over current relay and determine the time current characteristics.
- 6. To study percentage differential relay
- 7. To study Impedance, MHO and Reactance type distance relays.
- 8. To determine location of fault in a cable using cable fault locator.
- 9. To study Ferranti effect and voltage distribution in H.V. Long transmission line Transmission
- 10. To study operation of oil testing set. Simulation Based Experiments (using MATLAB or any other software).
- 11. To determine transmission line performance.
- 12. To obtain steady state, transient and sub-transient short circuit currents in an alternator.
- 13. To obtain formation of Y-bus and perform load flow analysis.
- 14. To perform symmetrical fault analysis in a power system.
- 15. To perform unsymmetrical fault analysis in a power system

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	QUIZ	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Acquire the knowledge of various abnormal conditions that could occur in power system.	PO1, PO2
CO2	Ability to design various protective devices in power system for protecting equipment and personnel.	PO1, PO3, PO5
CO3	Knowledge of various types of existing circuit breakers, their design and constructional details	PO2, PSO1
CO4	Knowledge of various conventional relays, their design and latest developments.	PO2, PSO1

		neeri ng	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie ty	ronm	S	idual	munic ation	t	long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEE 362A	POWER SYSTEM LAB	3	2	2	2	2								3		

2= moderately mapped

ETEE351A	PRACTICAL TRAINING-I	L	T	P	С
Version 1.0		0	0	0	1
Pre-requisites/Exposure					
Co-requisites					

The object of practical training-I is to enable the student to the investigative study taken up under core branch, involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry.

Course Outcomes:

On completion of this course, the students will be able to

CO1: In depth study of the topic assigned in the light of the Report prepared under practical training-I. CO2: Review and finalization of the Approach to the Problem relating to the assigned topic

CO3: Preparing an Action Plan for conducting the investigation, including team work

CO4: Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed

CO5: Final development of product/process, testing, results, conclusions and future directions

Catalogue Description

Students apply the engineering knowledge to prepare the project.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	In depth study of the topic assigned in the light of the Report prepared	PO12, PSO3, PO10
	under practical training-I.	
CO2	Review and finalization of the Approach to the Problem relating to the	PO2, PO3
	assigned topic	
CO3	Preparing an Action Plan for conducting the investigation, including team	PO4, PO9
COS	work	104,109
CO4	Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/	PO1, PO5
	Experiment as needed	
	Final development of product/ process, testing, results, conclusions	
CO5	and	PO4, PSO1
	future directions	

		Enci	Duoh	Dagi	Com	Mad	The a	East.	T741.:	To di	Com	Duois	I ifa	A 1:	T	Ethio.
		_														Ethic
		neeri	lem	gn/d	duct	ern	engi	ron	cs	vidu	muni	ct	long	catio	ation	s and
		ng	anal	evel	inve	tool	neer	ment		al or	catio	mana	Learn	n of	and	Com
		Kno	ysis	opm	stiga	usag	and	and		team	n	geme	ing	Conc	Indus	muni
		wled		ent	tions	e	soci	susta		wor		nt		epts	try	catio
		ge		of	of		ety	inabi		k		and			Frien	n
				solut	com			lity				finan			dly	Skills
				ions	plex							ce				
					prob											
					lems											
Cours																
e	Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1			
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2	PSO	PSO	PSO
														1	2	3

ETEC	PRACTIC											
357A	AL TRAININ G -I	3	2	2	2	2		3	3	3	2	2

2= moderately mapped,

3=strongly mapped

ETEE316A	POWER ELECTRONICS	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure					
Co-requisites					

COURSE OBJECTIVE

The main objective of this subjective	ct
---------------------------------------	----

is:

	To introduce students to the basic theory of power semiconductor devices and passive
	components, their practical applications in power electronics.
	To familiarize students to the principle of operation, design and synthesis of different power
	conversion circuits and their applications.
	To provide strong foundation for further study of power electronic circuits
and	l systems.
	The objective of the course is to learn the characteristics of different types of power electronic
	devices such as thyristors, MOSFET, IGBT, DIAC, TRIAC etc,

Course Outcomes:

On completion of this course, the students will be able to perform, hands-on experience related to the course contents ETEE316A by performing experiments as given below:

- CO1. Acquire the knowledge of principle of operation, design and synthesis of different power conversion circuits and their applications.
- CO2. Ability to study characteristics of different types of power electronic devices
- CO3. Knowledge of voltage and current commutated choppers along with knowledge of speed control of dc motor.
- CO4 To learn the basic of utilization of cycloconvertors.
- CO5 Able to demonstrate use of DC Converters,

CO6 To learn basics of inverters and thyristor technology utilized.

Catalogue Description

By studying this subject student of Electrical Engineering will have detailed knowledge of various solid state devices and various converters as most of the equipment's and machines uses power electronic devices as by the use of power electronic devices the overall cost and size of machine and equipment is reduced.

Course Content

UNIT I Hour: 10

Characteristics and switching behavior of different solid - state devices namely Power diodes, SCR, UJT TRAIC DAIC, MOSFET, GTO, IGBT, MCT and Power Transistors. Two transistor analogy SCR, Firing circuits of SCR and TRAIC, SCR gate characteristics. SCR ratings, protection of SCR against over current.

UNIT II Hour: 10

Classification of rectifiers, phase controlled rectifier: Single phase half wave controlled. Fully controlled and half controlled rectifiers and their performance parameters. Three phase half wave, full wave and half controlled rectifiers and their performance parameters. Effect of source impedance on the performance of single phase and three phase controlled rectifier. Dual converter.

UNIT III

Hour: 10

DC to DC converter: principle of chopper operation, step up choppers, types of chopper circuits. AC to AC converters: principle of operation of step up and step down cycloconverter, three phase to single phase cycloconverter, three phase to three phase cycloconverter

UNIT IV Hour: 10

Single phase voltage source inverter, three phase bridge inverters, voltage control in single phase inverters, PWM inverters, current source inverters.

Text Books:

1. Dr. P. S. Bimhra "Power Electronics", Khanna Publishing, 4th edition.

Reference Books:

- 1. J. Michael Jakob, Power Electronics: Principles & Applications, Vikas Publishing House Pvt.Ltd.
- 2. Vithayathis, J, Power Electronics : Principles and Applications, TMH
- 3. M.D. Singh & K.B. Khnachandani, "Power Electronics", Tata Mcgraw Hill.
- 4. P. C. Sen Power Electronics, TMH. 5. M. H. Rashid, "Power Electronics Circuits, Devices & Applications", PHI.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	ping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Acquire the knowledge of principle of operation, design and synthesis of different power conversion circuits and their applications.	PO1
CO2	Ability to study characteristics of different types of power electronic devices	PO2
CO3	Knowledge of voltage and current commutated choppers along with knowledge of speed control of dc motor.	РО3
CO4	To learn the basic of utilization of cycloconvertors.	PO6
CO5	Able to demonstrate use of DC Converters	PO1
CO6	To learn basics of inverters and thyristor technology utilized.	PO2

		Engineering Knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual or team work	Communication	Project management and finance	Life-long Learning	Application of Concepts	Innovation and Industry Friendly	Ethics and Communication Skills
Code	Course	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ETEC31	POWER	2	2	ى د			2									

2= moderately mapped

ETEE364A	POWER ELECTRONICS LAB	L	T	P	C
Version 1.0		0	0	2	1
Co-requisites					

To analyse the c	ourse contents	ETEE316A	by perfo	rming ex	periments.

To study R, RC & UJT Triggering circuits.

Course Outcomes:

On completion of this course, the students will be able to perform, hands-on experience related to the course contents ETEE316A by performing experiments as given below:

Acquire the knowledge of various power electronics components.

CO2. Ability to study R, RC and UJT triggering circuits.

CO3. Knowledge of voltage and current commutated choppers along with knowledge of speed control of dc motor.

CO4. To learn the basic of utilization of cycloconvertors.

Catalogue Description

To analyse the various triggering circuits, cycloconverters. Basics of Voltage and Current commutated choppers, Speed control of DC shunt motor (using Rectifier & Chopper), Speed control of TPIM using PWM inverter and Single phase Cyclo-converter

Course Content

List of experiments:

Lab Hours: 10 to 11

1. R, RC & UJT Triggering circuits

2. Single phase Semi & Full

converter

3. Single phase AC voltage controller using Triac and

SCRs

- 4. Speed control of TPIM using PWM inverter
- 5. Single phase Cyclo-converter

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Mid Term Presentation/	
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and								
	POs								
	Course Outcomes (COs)	Mapped Program Outcome s							
CO1	Acquire the knowledge of various power electronics components.	PO1							
CO2	Ability to study R, RC and UJT triggering circuits.	PO2							
CO3	Knowledge of voltage and current commutated choppers along with	PO3							
	knowledge of speed control of dc motor.								
CO4	To learn the basic of utilization of cycloconvertors.	PO6							

		eerin g	ble m anal	solutions	ct investi gation	der n tool usa ge	engi neer and soci	onme nt and sustai nabilit	hic s	nication	t mana	- long Lea rnin	catio n of Conc epts	vatio n and Indu	and Commu nication Skills
Cour se Code	Course	PO1	PO 2	PO3	PO4	P O 5	PO 6	PO7	P O 8	PO10	PO1 1	PO 12	PSO 1	PS O2	PSO3
ETE C364 A			2	3			2								

2= moderately mapped

3=strongly mapped

ETEC313A	CONTROL SYSTEM	L	T	P	C
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Applied Mathematics -III				
Co-requisites					

Course Objectives

- 1. To design the mathematical model of electrical and electromechanically systems.
- 2. To analyse the response of the systems with feedback and without feedback
- 3. To analyse the time response of the first and second order system.

- 4. To analyse the frequency response of the system.
- 5. To analyse and implement the stability methods.
- 6. To use Lead, Lag and Lead Lag compensator using frequency domain method.
- 7. To design the P, PI, PID controllers.

Course Outcomes

- CO1. Formulate the mathematical models of electrical and electromechanical systems
- CO2. Analyse the response of the systems with feedback and without feedback
- CO3. Understand the time response of first and second order system at various inputs
- CO4. Check the stability of the system
- CO5. Analyse the P, PI, PID controllers
- CO6. Understand the frequency response of the system

Catalog Description

This is a course in which you learn the various controlling techniques. The course helps us to understand the system and the behaviour of the system along with its stability. The time and frequency domains give the system behaviour in different domains.

Course Content

Unit I: 12 lecture hours

Definitions of Control Systems, Closed Loop and Open Loop Control system, Examples of Control Systems. Mathematical modelling of physical systems, differential equations of physical systems, transfer functions. Armature controlled and field-controlled DC servomotors; AC servomotors and deriving their transfer functions; Transfer function from block diagrams and signal flow graphs.

Unit II: 12 lecture hours

Basic Control Actions: Proportional, integral and Derivative controllers, effect of feedback on control system; Transient and steady state response of first order system; Second order system, Routh's Stability criterion, relative stability analysis; Static error co-efficient, position, velocity and acceleration error co-efficient.

Unit III: 10 lecture hours

Root Locus Techniques Bode Diagram, Minimum and Non-Minimum phase systems; Determination of Transfer from Bode Diagram; Polar Plots; Nyquist Plot; Stability Analysis using; Constant M & N Loci.

Unit IV: 10 lecture hours

Introduction to Compensators; lead, lag, lead-lag compensators, Concept of state- state variable and state model, Solution of time invariant, homogeneous state equation, controllability and observability, state transition matrix and its properties.

Text Books

- 1. II. J. Nagrath, M. Gopal, "Control System Engineering" New Age International.
- 2. N. K. Jain, "Automatic Control System Engineering" Dhanpat Rai

Reference Books/Materials

- 1. Ogata, "Modern Control Engineering" EEE
- 2. Kuo, "Automatic Control Systems" PHI

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term	
		nce	Exam	Assignment/ etc.	Exam	
Weightage (%)	10	10	20	10	50	

Map	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcome s						
CO1	Formulate the mathematical models of electrical and electromechanical systems	PO1						
CO2	Analyse the response of the systems with feedback and without feedback	PO2						

	Understand the time response of first and second order system at various	
CO3	inputs	PO3
CO4	Check the stability of the system	PO6
CO5	Analyse the P, PI, PID controllers	PO7
CO6	Understand the frequency response of the system	PO4

		eering Know ledge	ble m	solutions	ct investi gations	der n tool usa	engi neer and	nment and	hic s		nication	t manag ement	- long Lear	cation of Conc epts	vatio n and Indus	
Cour se Code	Co urs e Tit le	PO1	PO 2	PO3	PO4	P O5		PO7	P O 8	PO 9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO3
ETE C313 A	Co ntr ol Sy ste m	2	2	3	3		2	2								

2= moderately mapped

ETEC358A	CONTROL SYSTEM LAB	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure	-	_			
Co-requisites					

Will have a strong kn	owledge on MATLAB	software.
-----------------------	-------------------	-----------

☐ To study the concept of time response and frequency response of the system

☐ Students get the basic knowledge on practical control system applications on machines & electronic devices.

☐ This course aims to familiarize with the modelling of dynamical systems, to simulate and analyze the stability of the system using MATLAB.

Course Outcomes:

On completion of this course, the students will be able to

Catalogue Description

Students will design, implement, and test controllers for a variety of systems. This will enhance their understanding of feedback control familiarize them with the characteristics and limitations of real control devices.

Course Content

Hands-on experience enables to relate to the course contents ETEC308A with the practical aspect by performing the given experimental list below:

☐ To study a stepper motor & to execute microprocessor or computer-based control of the same

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Марр	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Discuss the need of software tools to illustrate modeling and simulation of any system.	PO5
CO2	Classify and evaluate the performance parameters of a system and then with simulation prepare an advance tool to modify the values of the parameter of the system in order to meet the desired need.	PO4, PSO1
соз	Prepare professionals in laboratory to compute or to predict the characteristics of a system by visualizing experimental data and its graphical representation.	PO3
CO4	Evaluate possible causes of discrepancy in practical experimental observations in comparison to theory by introducing the concepts of different stability theorems.	PO3, PO4
CO5	Primarily via team-based laboratory activities, students will demonstrate the ability to interact effectively on a social and interpersonal level with fellow students, and will develop the ability to divide up and share task responsibilities to complete assignments	PSO2, PO9
CO6	Develop professional quality textual and graphical presentations of laboratory data and computational results, incorporating accepted data analysis and synthesis methods, mathematical software, and word-processing tools	PO5, PO9

		neeri ng	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie ty	ronm	s	idual	munic ation	~	long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC 358A	CONTROL SYSTEM LAB	3		2	3	2				3				3	2	

2= moderately mapped

Third Year (VI Sem.)

ETEE404A	ELECTRIC DRIVES	L	T	P	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

The objective of the course is to understand the stable steady state operation and transient
dynamics of motor-load system,
To learn characteristics and control of DC motors drives, induction motor drives & Synchronous
motor drive, learn digital control of AC and DC drives.
Students will learn basic concept of solid state controlled electric drive, permanent magnet
machines, control of D.C. drives, control of A.C. motor drives and microprocessor control of
drive.
To obtain detailed knowledge of various drive systems used in field of traction, braking and
motoring used in field of railways, aeronautics etc.

COURSE OUTCOME: The outcome of this

course is

- CO1 Articulate information about electric drives for engineering problems.
- CO2 Design power system components for a specified system and application

 $_{\rm CO3}$ Ability to discuss various industrial motors controlling with drives utilization. $_{\rm CO4}$ Formulate solid state controlled electric drive, with microprocessor application. $_{\rm CO5}$ Ability to calculate drives to be uses as per industry applications

Catalogue Description

The objective of this course is to provide advanced knowledge and understanding of power electronics devices. Modern power electronics and drives are used in electrical as well as mechanical industry. The power converter or power modulator circuits are used with electrical motor drives, providing both DC or AC outputs and working from either a DC (battery) supply or from the conventional AC supply.

Course Content

UNIT I

Hour: 10

DC motor characteristics: Review of emf and torque equations of DC machine, review of torque-speed characteristics of separately excited dc motor, change in torque-speed curve with armature voltage, example load torque-speed characteristics, operating point, armature voltage control for varying motor Speed, flux weakening for high speed operation.

UNIT II

Hour: 6

Closed-loop control of DC Drive: Control structure of DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer functions, modeling of chopper as gain with switching delay, plant transfer function, for controller design, current controller specification and design, speed controller specification and design. Multi-quadrant DC drive Review of motoring and generating modes operation of a separately excited dc machine, four quadrant operation of dc machine; single-quadrant, two- quadrant and four-quadrant choppers; steady-state operation of multi-quadrant chopper fed dc drive, regenerative braking.

UNIT III Hour: 6

Chopper fed DC drive: Review of dc chopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armature current waveform and ripple, calculation of losses in dc motor and chopper, efficiency of dc drive, smooth starting. Induction motor characteristics: Review of induction motor equivalent circuit and torque speed characteristic, variation of torque-speed curve with (i) applied voltage, (ii) applied frequency and (iii) applied voltage and frequency, typical torque-speed curves of fan and pump loads, operating point, constant flux operation, flux weakening operation.

UNIT IV Hour: 8

Scalar control or constant V/f control of induction motor :Review of three-phase voltage source inverter, generation of three-phase PWM signals, sinusoidal modulation, space vector theory, conventional space vector modulation; constant V/f control of induction motor, steady state performance analysis based on equivalent circuit, speed drop with loading, slip regulation. Control of slip ring induction motor: Impact of rotor resistance of the induction motor torque speed curve, operation of slip-ring induction motor with external rotor resistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and
ı	Mapping between cos and
ı	POs
١	108

	Course Outcomes (COs)	Mapped Program Outcome s
CO1	Articulate information about electric drives for engineering problems.	PO1
	Design power system components for a specified system and	
CO2	application	PO2
CO3	Ability to discuss various industrial motors controlling with drives utilization	PO4
CO4	Formulate solid state controlled electric drive, with microprocessor application	PO2
CO5	Ability to calculate drives to be uses as per industry applications	PO1

		neeri ng	em analy sis	gn/de velop ment of soluti ons		ern tool usag e	engi neer and socie ty	ronm	S	idual	munic ation	"	long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEE 404A	ELECTRIC DRIVES	2	2		3											

2= moderately mapped

ETEE403A	SWITCHGEAR AND PROTECTION	L	T	P	С					
Version 1.0		3	1	0	4					
Pre-requisites/Exposure	Basics of Power System - I and Power System - II									
Co-requisites										

In spite of all care and precautions taken in the design, installation and operation of Power system and power equipment, abnormal conditions and faults do occur in the system. Some fault such as short circuits can prove highly damaging, not only to the components but also to the entire power system. However continuity of power supply is needed in day to day life. So study of switchgear and protection is essential. It is expected that the understanding of operational principles, selection and testing aspects of switchgear and protection system must be known by students which ultimately help them to maintain the reliability of electric discharging their duties as a supervisor a technician or in substation, manufacturing industries and public service utilities

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Acquire the knowledge of various abnormal conditions that could occur in power system
- CO2. Test the performance of different protective relays; maintain protection systems used for of protection alternators and transformers.
- CO3. Ability to design various protective devices in power system for protecting equipment and personnel.
- CO4. Knowledge of various types of existing circuit breakers, their design and constructional details.
- CO5. Knowledge of various conventional relays, their design and latest developments.
- CO6. Knowledge of standards and specifications related to switchgear and protection **Catalogue Description**

To introduce the students with basic concepts of Relays, Protection schemes, Switch gear and

modern trends in protection for protecting the power system equipment

Course Content

UNIT I Lecture Hours

INTRODUCTION TO PROTECTION SCHEME: Need for Protective systems -Nature and causes of Faults - Types of faults - Faults - Fault statistics - Evolution of protective relays - Zones of protection - Primary and Back - up Protection - Essential qualities of Protection - Classification of Protective schemes – Automatic reclosing - current transformer for Protection - potential transformer - summation transformer - phase – sequence current - segregating network - basic relay terminology

UNIT II Lecture Hours 10

RELAYS: General considerations -sensing of faults -construction of electro-magnetic attraction and induction types relays -Buchholz and negative sequence relay -concept of reset, pick up, inverse time and definite time characteristics, overcurrent, over voltage, directional, differential and distance relays on R-X diagram. Static Relays: Introduction, advantage and limitation of static relays, static overcurrent, directional, distance and differential relays.

UNIT III Lecture Hours 6

PROTECTION: Types & detection of faults and their effects, alternator protection scheme (stator, Rotor, reverse power protection etc.) -Power transformer protection (external and internal faults protection), generator- transformer unit protection scheme, bus bar protection -Transmission line protection (current/time grading, distance), Pilot relaying schemes, power line carrier protection

UNIT IV Lecture Hours 7

SWITCHGEAR: Theory of current interruption-energy balance and recovery rate theory, arc quenching, recovery and restriking voltages -Types of circuit breakers. bulk oil and minimum oil, air break and air blast, Sulphur hexafluoride (SF6) and vacuum circuit breakers -Rating selection and testing of circuit breakers/operating mechanisms -LT switchgear, HRC fuses, types construction and applications.

TEXT BOOKS:

- 1. Badriram & Vishwakarma, "Power System Protection", Tata McGraw-Hill Education
- 2. Paithankar Y. G., S. R. Bhide., "Fundamentals of power system protection" PHI Learning Pvt. Ltd.

REFERENCES BOOKS:

- 1.The Elementary Council "Power System Protection", Vol.1,2 &3, Peter Peregrinus Ltd. Tata McGraw-Hill Education.
- 2.Ravindra Nath, and Chandra, "Power systems protection and switchgear", New age international (P) Ltd.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping betw	reen COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Acquire the knowledge of various abnormal conditions that could occur	PO1, PSO1
CO2	in power system Test the performance of different protective relays, maintain protection systems used for protection of alternators and transformers.	PO2
CO3	Ability to design various protective devices in power system for protecting equipment and personnel.	PO5, PO3
CO4	Knowledge of various types of existing circuit breakers, their design and constructional details.	PO2
CO5	Knowledge of various conventional relays, their design and latest developments	PO2, PO4
CO6	Knowledge of standards and specifications related to switchgear and protection	PSO1, PSO2

		neeri	em analy sis	gn/de velop ment of soluti ons	Cond uct invest igatio ns of comp lex probl ems	ern tool usag e	engi neer and socie	ronm	s	idual	munic ation	t	long Learn ing	cation of Conce pts	and Indust ry	and Com
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEE 404A	ELECTRIC DRIVES	2	2		3											

2= moderately mapped

ETEC305A	MEASUREMENT & INSTRUMENTATION	L	T	P	С
Version 1.0		3	0	0	3
Pre-	Basic concepts of R, L and C parameters				
requisites/Exposure					
Co-requisites					

	To study the methods of analog measurement and digital measurement of electrical
	quantities.
	The measurement can be done by analog meters, which point toward electrodynamic,
	thermocouple electrostatic & rectifier type ammeters & voltmeters.
	Measurement of voltage, current, power, energy, flux and iron losses with the various
	meters.
	AC and DC bridges for the measurement of low, medium and high resistances,
Inc	luctance & Capacitance.
	To measure frequency and phase differences by Lissajous Patterns formed on the cathode
	ray oscilloscope.
	To study digital meter, pulse generators, signal generators, function generators, wave
	analysers, distortion analysers, spectrum analyser, Harmonic analyser, FFT analyser and
	decade counting Assembly (DCA) for the measurement of frequency and time.

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Measure low, medium & high resistances using suitable bridges.
- CO2. Determine the value of inductor & Capacitor with the help of AC Bridges.
- CO3 Test & Calibrate ammeter, voltmeter and wattmeter.
- CO4. Understand the principles of various electronic instruments and transducers.
- CO5. Measure frequency and phase in CRO.

Catalogue Description

The objective of the course is to study the basic concepts and definitions in measurement, oscilloscope, electronic instruments, generation & analysis of waveforms, frequency & time

measurement and transducers & signal conditioning. It discusses about the importance of signal generators, analyzers in measurement and the importance and functioning of transducers & signal conditioning system.

Course Content

UNIT I Hours 10

Measurement & Errors: Methods of Measurement, Measurement System, Classification of instrument system, Characteristic of instrument & measurement system Errors in Measurement & its Analysis, Standards. Principles, Construction and application of moving coil, moving iron, electrodynamometer type, induction type instruments and extension of range of ammeter, voltmeter (shunt and multiplier).

UNIT II Hours 10

AC & DC Bridges: Different methods of measuring low, medium and high resistances, Measurement of Inductance & Capacitance with the help of various DC & AC Bridges, Q Meter. Magnetic Measurement: Ballistic Galvanometer, Flux meter, Determination of Hysteresis loop, Measurement of iron losses. Measurement of power, Energy, phase and frequency. Radio frequency power measurements

UNIT III Hours 12

Cathode Ray Oscilloscope: Basic CRO circuit (Block Diagram), Cathode ray tube (CRT) & its component, Application of CRO in measurement, Lissajous Pattern., Dual trace &dual beam

Oscilloscope. Sampling and storage oscilloscope. Introduction to digital meter, $3^{\frac{1}{2}}$

concept) to $1^{\frac{1}{2}}$ bit (very high price concept).

UNIT – IV Hours 12

Transducers: Introduction and classification of transducers, strain gauges and their types, Resistance thermometers, thermistors, thermocouples, Linear variable differential transformer Rotary variable differential transformer, capacitive transducer, Piezo-electric transducer, Opto-electronic transducers

TEXT BOOK:

1. E.W. Golding & F.C. Widdis, "Electrical Measurement & Measuring Instrument", A.W.

Wheeler& Co. Pvt. Ltd. India.

2. A.K. Sawhney: "Electrical & Electronic Measurement & Instrument ", DhanpatRai & Sons , India .

REFERENCE BOOKS:

- 1. Forest K. Harries, "Electrical Measurement "Willey Eastern Pvt. Ltd. India.
- 2. M.B. Stout, "Basic Electrical Measurement" Prentice Hall of India, India.
- 3. W.D. Cooper," Electronic Instrument & Measurement Technique "Prentice Hall International.
- 4. J.B. Gupta, "Electrical Measurements and Measuring Instruments" S.K. Kataria & Son

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	Mapping between COs and POs								
	Course Outcomes (COs)	Mapped Outcomes	Program						
CO1	Measure low, medium & high resistances using suitable bridges.	PSO2, PO4							
CO2	Determine the value of inductor & Capacitor with the help of AC Bridges.	PSO2, PO3							
CO3	Test & Calibrate ammeter, voltmeter and wattmeter.	PO1							

CO4	Understand the principles of various electronic instruments and transducers	PO2, PSO2
	Measure frequency and phase in CRO.	
CO5		PO5

		ering Knowl	lem		t investig ations	ern tool usag e	engi neer and	nment	ics		ication	manag ement	long Lear ning	ation of Conce pts	ation and Indust	and Commu nication Skills
Co urs e Co de	Cours e Title	PO1	PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO9	PO10	PO11	PO 12	PSO1	PSO 2	PSO3
ET EE 404 A	TRIC	2	2		3											

2= moderately mapped

ETEC355A	MEASUREMENT & INSTRUMENTATION LAB	L	T	P	С
Version 1.0		0	0	2	1
Pre-					
requisites/Exposure	Basic concepts of R, L and C parameters				
Co-requisites					

The objective of the course is to study the basic concepts and definitions in measurement, oscilloscope, electronic instruments, generation & analysis of waveforms, frequency & time measurement and transducers & signal conditioning. It discusses about the importance of signal generators, analyzers in measurement and the importance and functioning of transducers & signal conditioning system

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Measure low, medium & high resistances using suitable bridges.
- CO2. Determine the value of inductor & Capacitor with the help of AC Bridges.
- CO3 Test & Calibrate ammeter, voltmeter and wattmeter.
- CO4. Understand the principles of various electronic instruments and transducers.
- CO5. Measure frequency and phase in CRO.

Catalogue Description

The objective of the course is to study the basic concepts and definitions in measurement, oscilloscope, electronic instruments, generation & analysis of waveforms, frequency & time measurement and transducers & signal conditioning. It discusses about the importance of signal generators, analyzers in measurement and the importance and functioning of transducers & signal conditioning system.

Course Content

	on experience enables to relate to the course contents ETEC305A with the practical
aspect b	y performing the given experimental list below:
	Study blocks wise construction of an Analog Oscilloscope & Function generator.
	Study blocks wise construction of a Multimeter & frequency counter.
	Study Measurement of different components & parameters like Q of a coil etc. using LCRQ
r	meter.
	Study of distortion factor meter and determination of the % distortion of the given oscillator

Determine output characteristics of a LVDT and Measure displacement using LVDT
Study characteristics of temperature transducer like Thermocouple, Thermistor & RTD with implementation of a small project using signal conditioning circuits like instrumentation amplifier.
Measurement of Strain using Strain Gauge
To study differential pressure transducer & signal conditioning of output signal.
Measurement of level using capacitive transducer.
Study of Distance measurement using ultrasonic transducer

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attendance	Mid Term	Presentation/	End Term
			Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes						
CO1	Measure low, medium & high resistances using suitable bridges.	PSO2, PO4						
CO2	Determine the value of inductor & Capacitor with the help of AC Bridges.	PSO2, PO3						
CO3	Test & Calibrate ammeter, voltmeter and wattmeter.	PO1						
CO4	Understand the principles of various electronic instruments and transducers	PO2, PSO2						
CO5	Measure frequency and phase in CRO.	PO5						

ETEE452A	POWER SYSTEM SIMULATION LAB	L	T	P	C
Version 1.0		0	0	2	1
Pre-requisites/Exposure	Basic concepts of R, L and C parameters				
Co-requisites					

The objective of the course is

	To st	tudy	the	basic	concepts	of	MATLAB	software	and	its	implementation	to	the
power	system networks.												
	It dis	cusse	s ab	out th	e utilizing	of	parameters	considers	durir	ng n	nodeling of powe	r	
system	elem	ents											

Course Outcomes:

On completion of this course, the students will be able to

CO1: Exposure to the modelling of individual power system components like transmission lines and generators

CO2: Enable the students to do load flow and short circuit calculations

CO3: Enable the students to do analysis of economic dispatch of thermal generators, load sharing and governor control

CO4: To impart the knowledge of automatic generation control and voltage regulation

CO5: To make students capable of analysis of power system stability, security and reliability

CO6: Awareness of deregulated power system

Catalogue Description

The aim of this course is to introduce MATLAB application its various toolboxes to be used for modelling real time power system network.

Course Content

LIST OF EXPERIMENTS:

Lab Hours- 10-11

Use of MATLAB for the following

- 1. Formation of Y-Bus by inspection method and analytical method.
- 2. Formation of Z-Bus matrix.
- 3. Power flow analysis by GS, NR and FDLF methods.
- 4. Performance of transmission lines

- 5. Economic Dispatch Problem-without losses
- 6. Economic Dispatch Problem-with losses
- 7. Automatic load frequency control
- 8. Automatic voltage regulation.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapı	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources	PO1, PSO1
CO2	Design and develop basic schemes of electric vehicles and hybrid electric vehicles	PO2, PSO2
CO3	Choose proper energy storage systems for vehicle applications	PO1, PO4
CO4	Identify various communication protocols and technologies used in vehicle networks	PO5
CO5	Selecting sustainability power solutions be reducing carbon emission levels.	PO3, PO4, PO5

		neeri	em analy sis	gn/d evelo pme nt of solut ions	uct inves tigati ons	ern tool usag e	engi neer and socie	Envi ronm ent and susta inabi lity	S	idual	munic ation	t	long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEE 425A	POWER SYSTEM SIMULATION LAB	3	2	3	2	2								2	2	

2= moderately mapped

3=strongly mapped

ETEE401A	RENEWABLE ENERGY SYSTEM	L	T	P	С
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Basics of power system I				
Co-requisites					

COURSE OBJECTIVES

	•	1 1 1	. 1	C 11		г .
-	imnart	knowledge	On the	talla	T/110	Lonice
10	mmant	KIIOWICUEC	OH UIC	TO HO	will 2	i Oines.

☐ Awareness about renewable Ene	ergy Sources and technologies.
---------------------------------	--------------------------------

- ☐ Adequate inputs on a variety of issues in harnessing renewable Energy.
- Recognize current and possible future role of renewable energy sources.

COURSE OUTCOMES:

CO1 Understand the basic physics of wind and solar power generation.

- CO2 Understand the power electronic interfaces for wind and solar generation
- CO3 Understand the issues related to the grid-integration of solar and wind energy systems.
- **CO4** Understand the energy scenario and the consequent growth of the power generation from Renewable energy sources

Catalogue Description

The aim of this course is to introduce about renewable sources of energy. Basics of wind and power generation techniques utilized along with primary discussion of related statistics. All is to be discussed with details.

Course Content

UNIT I Hours: 8

Environmental consequences of fossil fuel use, Importance of renewable sources of energy, Sustainable Design and development, Types of RE sources, Limitations of RE sources, Present Indian and international energy scenario of conventional and RE sources.

UNIT II Hours:8

Wind Energy: Power in the Wind – Types of Wind Power Plants (WPPs)–Components of WPPs-Working of WPPs- Siting of WPPs-Grid integration issues of WPPs.

UNIT III Hours: 8

Solar PV And Thermal Systems: Solar Radiation, Radiation Measurement, Solar Thermal Power Plant, Central Receiver Power Plants, Solar Ponds.- Thermal Energy storage system with PCM- Solar Photovoltaic systems: Basic Principle of SPV conversion — Types of PV Systems- Types of Solar Cells, Photovoltaic cell concepts: Cell, module, array ,PV Module I-V Characteristics, Efficiency & Quality of the Cell, series and parallel connections, maximum power point tracking, Applications.

UNIT IV Hours:6

Biomass Energy: Introduction-Bio mass resources –Energy from Bio mas: conversion processes- Biomass Cogeneration-Environmental Benefits. Geothermal Energy: Basics, Direct Use, Geothermal Electricity. Mini/micro hydro power: Classification of hydropower schemes, Classification of water turbine, Turbine theory, Essential components of hydroelectric system.

TEXT BOOKS:

- 1. Stuart Borlase, Smart Grids, Infrastructure, Technology and Solutions, CRC Press.
- 2. D. Mukherjee, S. Chakrabarti, Fundamentals of Renewable Energy Systems.

3. Renewable and Efficient Electric Power Systems by Gilbert M. Masters, 2d edition, Wiley, 2004 ISBN 0-471-28060-7.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term Presentation/		End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapı	Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes					
CO1	Choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources	PO1, PSO1					
CO2	Design and develop basic schemes of electric vehicles and hybrid electric vehicles	PO2, PSO2					
CO3	Choose proper energy storage systems for vehicle applications	PO1, PO4					
CO4	Identify various communication protocols and technologies used in vehicle networks	PO5					
CO5	Selecting sustainability power solutions be reducing carbon emission levels.	PO3, PO4, PO5					

Fourth Year (VII Sem.)

ETEE422A	SMART ELECTRIC GRID	L	T	P	C
Version 1.0		3	1	0	4
Pre-requisites/Exposure	Power Electronics				
Co-requisites					

COURSE OBJECTIVES

The object	ectives	of this	course	are to:	
------------	---------	---------	--------	---------	--

Understand the challenging issues and architecture of smart grid.
Understand the communication and wide area monitoring in smart grid.
Rudimentary energy management issues in smart grid.
Acquire the knowledge in computational intelligence and security issues in smart grid.
Know the role of Power electronics and energy storage in smart grid

COURSE OUTCOMES:

- **CO1** Know, list and classify the basic terms of a Power System Grid; explain the importance and objectives of the various dispersed generation units as well as that of the various energy management policies; distinguish them according to their priorities.
- **CO2** Know, name, describe and classify the modern and innovative application fields of dispersed generation units; discuss relative merits
- CO3 Know, describe by drawing a block diagram and explain the operation of the basic part of a smart grid (namely the Microgrid); quantify its operational, financial and environmental advantages using charts.
- CO4 Know, understand and explain the concept of a smart grid; identify the telecommunication.

Catalogue Description

The aim of this course is to introduce about the smart grid technologies, their applications and control issues covering Smart Generation (Renewable and Microgrid), Smart Transmission (Integration of Renewable Energy Sources, Wide Area Measurements) and Smart Distribution (Demand Response Management and Power Quality Management)

Course Content

UNIT-I Lecture Hours: 10

Introduction to Smart Grid: Working definitions of Smart Grid and Associated Concepts – Smart Grid Functions-Traditional Power Grid and Smart Grid –New Technologies for Smart Grid -Advantages – Indian Smart Grid –Key Challenges for Smart Grid.

UNIT II Hours10

Smart Grid Architecture: Components and Architecture of Smart Grid Design –Review of the proposed architectures for Smart Grid. The fundamental components of Smart Grid designs – Transmission Automation – Distribution Automation –Renewable Integration Tools and Techniques for Smart Grid: Computational Techniques –Static and Dynamic Optimization Techniques –Computational Intelligence

UNIT III Hours: 10

Distribution Generation Technologies: Introduction to Renewable Energy Technologies – Micro grids – Storage Technologies – Electric Vehicles and plug – in hybrids – Environmental impact and Climate Change – Economic Issues.

UNIT IV Hours: 10

Communication Technologies and Smart Grid: Introduction to Communication Technology – Synchro Phasor Measurement Units (PMUs) –Wide Area Measurement Systems (WAMS). Control of Smart Power Grid System: Load Frequency Control (LFC) in Micro Grid System – Voltage Control in Micro Grid System –Reactive Power Control in Smart Grid. Case Studies and Test beds for the Smart Grids.

TEXT BOOKS:

- 1. Stuart Borlase, Smart Grids, Infrastructure, Technology and Solutions, CRC Press.
- 2. Gil Masters, Renewable and Efficient Electric Power System, Wiley-IEEE Press. REFERENCE BOOKS:
- 1. A.G. Phadke and J.S. Thorp, "Synchronized Phasor Measurements and their Applications", Springer Edition. 2. T. Ackermann, Wind Power in Power Systems, Hoboken, NJ, USA, John Wiley.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs)

Mappin	g between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources	PO1, PSO1
CO2	Design and develop basic schemes of electric vehicles and hybrid electric vehicles	PO2, PSO2
CO3	Choose proper energy storage systems for vehicle applications	PO1, PO4
CO4	Identify various communication protocols and technologies used in vehicle networks	PO5
CO5	Selecting sustainability power solutions be reducing carbon emission levels.	PO3, PO4, PO5

1=weakly mapped

2= moderately mapped

ETEE425A	ELECTRIC & HYBRID VEHICLES	L	T	P	C
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

COURSE OBJECTIVES:

	Introduction to Hybrid Electric Vehicles, Conventional Vehicles, Hybrid Electric Drive-trains, Electric
	Propulsion unit,
	Configuration and control of DC Motor drives, Induction Motor drives, Permanent Magnet Motor
	drives, switched reluctance motor,
	Energy Storage Requirements in Hybrid and Electric Vehicles, Sizing the drive system,
П	Design of a Hybrid Electric Vehicle, Energy Management Strategies

COURSE OUTCOMES:

CO1	Choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources
CO2	Design and develop basic schemes of electric vehicles and hybrid electric vehicles
CO3	Choose proper energy storage systems for vehicle applications
CO4	Identify various communication protocols and technologies used in vehicle networks
CO5	Selecting sustainability power solutions by reducing carbon emission levels.

Catalogue Description

Hybrid vehicle combines any two power (energy) sources. Possible combinations include diesel/electric, gasoline/fly wheel, and fuel cell (FC)/battery. Typically, one energy source is storage, and the other is conversion of a fuel to energy. The combination of two power sources may support two separate propulsion systems. All have been briefed in the course content.

Course Content

UNIT-I Lecture Hours: 10

Introduction to Electric Vehicles: EV System - Components of an EV; EV History; EV Advantages - Efficiency Comparison, Pollution Comparison, Capital and Operating Cost Comparison; EV Market. Vehicle Mechanics: Laws of Motion, Vehicle Kinetics, Dynamics of Vehicle Motion, Propulsion Power, Velocity and Acceleration, Constant FTR, Level Road, Propulsion System Design.

UNIT-II Lecture Hours: 12

Energy Source: Battery , Battery Basics, Lead-Acid Battery, Alternative Batteries, Battery Parameters, Technical Characteristics, Targets and Properties of Batteries, Battery Modelling , Alternative Energy Sources: Fuel Cells Characteristics & types , Fuel Cell EV, Supercapacitors and Ultracapacitors , Flywheels.

UNIT-III Lecture Hours: 10

Electric Vehicle Drivetrain: EV Transmission Configurations, Transmission Components, Ideal Gearbox: Steady State Model, EV Motor Sizing: Initial Acceleration, Rated Vehicle Velocity, Maximum Velocity, Maximum Gradability

UNIT-IV Lecture Hours: 10

Hybrid Electric Vehicles: Types of Hybrids: Series and Parallel HEVs, Internal Combustion Engines, Reciprocating Engines, Gas Turbine Engine, Design of an HEV, Hybrid Drivetrains, Sizing of Components.

Text Books:

1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

References:

- 1. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003
- 2. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping bet	ween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Choose a suitable drive scheme for developing an electric hybrid vehicle depending on resources	PO1, PSO1

CO2	Design and develop basic schemes of electric vehicles and hybrid electric vehicles	PO2, PSO2
CO3	Choose proper energy storage systems for vehicle applications	PO1
CO4	Identify various communication protocols and technologies used in vehicle networks	PO5
CO5	Selecting sustainability power solutions be reducing carbon emission levels.	PO3, PO5

		neeri ng	em analy sis	gn/d evelo pme nt of solut	uct inves tigati ons of	ern tool usag e	engi neer and socie ty	ronm ent and susta inabi	S	idual	munic ation	t	long Learn ing	cation of Conce pts	ation and Indust ry Frien	Ethics and Com munic ation Skills
					com plex probl ems			lity				e			dly	
Course Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEE 425A	ELECTRIC & HYBRID VEHICLES	3	2	3		2								2	2	

2= moderately mapped

ETEE407A	HVDC AND FLEXIBLE AC TRANSMISSION	L	T	P	С
	SYSTEMS				
Version 1.0		3	0	0	3
Pre-requisites/Exposure	Power Electronics				
Co-requisites					

Course Objectives:

To introduce students with the concept of HVDC Transmission system.
To familiarize the students with the HVDC converters and their control system.
To expose the students to the harmonics and faults occur in the system and their prevention.

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Develop the knowledge of HVDC transmission and HVDC converters and the applicability and advantage of HVDC transmission over conventional AC transmission.
- CO2. Formulate and solve mathematical problems related to rectifier and inverter control methods and learn about different control schemes as well as starting and stopping of DC links
- CO3. Analyze the different harmonics generated by the converters and their variation with the change in firing angles.
- CO4. Develop harmonic models and use the knowledge of circuit theory to develop filters and assess the requirement and type of protection for the filters.
- CO5. Study and understand the nature of faults happening on both the AC and DC sides of the converters and formulate protection schemes for the same.
- CO6. Review the existing HVDC systems along with MTDC systems and their controls and recognize the need to follow the advancements in both the existing systems and HVDC systems and determine the most economic coexistence of both.

Catalogue Description

The objective of this course is to provide advanced knowledge and understanding of power electronics applications in power transmission systems

Course Content

UNIT-I Hours: 8

Introduction: comparison of AC and DC Transmission systems, Application of D.C. Transmission, Types of DC links, typical layout of a HVDC converter station. HVDC converters, pulse number, Analysis of phase Bridge circuit with and without overlap, converter Bridge characteristics, equivalent circuits of Rectifier and inverter configurations Twelve pulse converters.

UNIT- II

Lecture Hours: 8

Converter and HVDC system control: Principles of DC links control, converter control characteristics, system control Hierarchy, Firing angle control, current and extinction Angle control starting and stopping of DC link.

Harmonics, Filters and Reactive Power Control: Introduction, generation of Harmonics, AC and DC Filters, Reactive power requirements at steady state, sources of Reactive power static VAR systems.

UNIT-III

Lecture Hours: 7

Power Flow Analysis in AC/DC Systems: Introduction, Modeling of DC/AC converters, controller equations, solutions of AD/DC load flow-simultaneous approach and sequential approach.

UNIT –IV Lecture Hours : 7

FACTS Concepts: Flow of power in AC parallel paths and Meshed systems, Basic types of FACTS controllers, Brief description and Definitions of FACTS controllers, objectives of shunt compensation, Methods of controllable VAR generation, Static VAR compensators, SVC and STATCOM, comparison. Objectives of series compensation, variable impedance type-thyristor switched series capacitors (TCSC).

Text Books:

- 1. K.R. Padiyar," HVDC Power Transmission Systems", Wiley Eastern Limited
- 2. N.G. Hingorani & L. Gyugyi," Understanding of FACTS", IEEE Press.

References Books:

- 1. S.Rao ,"EHV AC, HVDC Transmission & Distribution Engineering" ,Khanna publishers, 3rd edition 2003.
- 2. Abhijit Chakrabarti, D. P. Kothari, A. K. Mukhopadhyay and Abhinandan De,"An Introduction to: Reactive Power Control and Voltage Stability in Power Transmission Systems", Eastern Economy Edition, 2010.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping between COs and POs						
	Course Outcomes (COs)	Mapped Program Outcomes				
CO1	Develop the knowledge of HVDC transmission and HVDC converters and the applicability and advantage of HVDC transmission over conventional AC transmission.	PO1, PSO1				
CO2	Formulate and solve mathematical problems related to rectifier and inverter control methods and learn about different control schemes as well as starting and stopping of DC links Analyze the different harmonics generated by the converters and their	PO2, PSO2				
CO3	variation with the change in firing angles	PO1, PO4				
CO4	Develop harmonic models and use the knowledge of circuit theory to develop filters and assess the requirement and type of protection for the filters	PO5				
CO5	Study and understand the nature of faults happening on both the AC and DC sides of the converters and formulate protection schemes for the same	PO3, PO4, PO5				
CO6	Review the existing HVDC systems along with MTDC systems and their controls and recognize the need to follow the advancements in both the existing systems and	PO2, PSO1				

HVDC systems and determine the most economic coexistence of both.	

																Ethics
			em				_	ronm			munic		_	cation		and
		_	analy									mana				Com
		Kno			tigati					team		geme	_			munic
		wled			ons			susta		work		nt and			_	ation
		ge		solut	l		•	inabi				financ			Frien	Skills
					com			lity				е			dly	
					plex											
					probl ems											
					CIIIS											
Course																
Code	Course Title	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO1	PO1	PO1			
		1	2	3	4	5	6	7	8	9	0	1	2	PSO		
														1	2	3
	HVDC															
	AND															
ETEE	FLEXIBLE	3	2	3	2	2								2	2	
	AC															
	TRANSMISSIO															
407A	N															
	SYSTEMS															
								<u> </u>		<u> </u>						

2= moderately mapped

ETEE460A	MAJOR PROJECT	L	T	P	С
Version 1.0		0	0	0	6
Pre-requisites/Exposure					
Co-requisites					

COURSE OBJECTIVE

The objective of Project Work II & Dissertation is to enable the student to
extend further the investigative study taken up under EC P1, either fully
theoretical/practical or involving both theoretical and practical work, under the
guidance of a Supervisor from the Department alone or jointly with a Supervisor
drawn from R&D laboratory/Industry.

☐ This is expected to provide a good training for the student(s) in R&D work and technical leadership.

COURSE OUTCOMES

CO1 In depth study of the topic assigned in the light of the Report prepared under minor project.

CO2 Review and finalization of the Approach to the Problem relating to the assigned topic.

CO3 Preparing an Action Plan for conducting the investigation, including team work.

CO4 Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed.

CO5 Final development of product/process, testing, results, conclusions and future directions.

CO6 Preparing a paper for Conference presentation/Publication in Journals, if possible.

COURSE OVERVIEW: The student will submit a synopsis at the beginning of the semester for approval from the departmental committee in a specified format. The student will have to present the progress of the work through seminars and progress reports

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

			Mid Term	Presentation/	End Term
Components	Quiz	Attendance	Exam Assignment/ etc.		Exam
Weightage (%)	10	10	20	10	50

Mapp	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program
	Course Outcomes (COs)	Outcomes
	The major-project is a team activity having 1-4 students in a team. This is	
CO1	simulation based/electronic product design work with a focusing on electrical &	PO9, PO5
	electronic circuit.	
CO2	The major project may be a complete hardware or a combination of hardware and	PSO1, PSO2
	software. This part is the extension of minor project	
CO3	Major Project should design a system required in real life. It should encompass	PO6, PO12
	components, devices, analog or digital ICs, micro controller with which functional familiarity is introduced.	
CO4	After interactions with coordinator/supervisors and based on comprehensive	PSO3, PO2
	literature survey/ need analysis, the student shall identify the title and define the aim and objectives of major-project in extension with minor project.	
CO5	Student is expected to detail out specifications, methodology, resources required,	PO3, PO4
	critical issues involved in design and implementation and submit the proposal within first week of the semester.	100,104
CO6	The student is expected to exert on design, development and testing of the proposed	PO3,

		_										_		Appli		
				_			engi				muni		_	cation		
		_					neer					mana				Com
			_	-	_	_	and		l	team		geme	_	Conc		
		wled			tions		socie		l	work	-	nt		_	_	cation
		ge			of			inabi				and			Frien	SKIIIS
				solut				lity				finan			dly	
				ions	•							ce				
					prob											
					lems											
Cours																
e	Course	РО	PO	PO	РО	РО	РО	PO	РО	РО	PO1	PO1	PO1			
Code	Title	1	2	3	4	5	6	7	8	9	0	1	2	PSO	PSO	PSO
														1	2	3
ETEE	MAJOR															
460A	PROJE C T	3	2	3		2							2	2	2	

2= moderately mapped

ETEE465A	PRACTICAL TRAINING-II	L	T	P	C
Version 1.0		0	0	0	2
Pre-					
requisites/Exposure					
Co-requisites					

Course Objectives:

The object of practical training-II is to enable the student to the investigative study taken up under core branch, involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry.

Course Outcomes:

On completion of this course, the students will be able to

CO1: In depth study of the topic assigned in the light of the Report prepared under practical training-I.

CO2: Review and finalization of the Approach to the Problem relating to the assigned topic

CO3: Preparing an Action Plan for conducting the investigation, including team work

CO4: Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed

CO5: Final development of product/process, testing, results, conclusions and future directions

Catalogue Description

Students apply the engineering knowledge to prepare the project.

Course Content

Student visit the industry and get the hand on experience.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	ponents QUIZ		Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapping bet	ween COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	In depth study of the topic assigned in the light of the Report prepared under practical training-I.	PO12, PSO3, PO10
CO2	Review and finalization of the Approach to the Problem relating to the assigned topic	PO2, PO3
СОЗ	Preparing an Action Plan for conducting the investigation, including team work	PO4, PO9
CO4	Detailed Analysis/ Modelling/ Simulation/ Design/ Problem Solving/ Experiment as needed	PO1, PO5
CO5	Final development of product/ process, testing, results, conclusions and future directions	PO4, PSO1

		neeri	lem anal ysis	gn/d evel opm ent of solut ions	duct inve stiga tions of com	ern tool usag e	engi neer and soci ety	ron ment	cs	vidu	muni catio n	-	long Learn	catio n of Conc epts	Indus try Frien	s and Com muni catio
Cours e Code	Course Title	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC 463A	PRACTI C AL TRAININ G -II	3	2	2	2	2				3	3		3	2		2

2= moderately mapped

Fourth Year (VIII

ETEC470A	INTERNSHIP	L	T	P	C
Version 1.0		0	0	0	12
Pre-requisites/					
Exposure					
Co-requisites					

Course Objectives:

Assist the student's development of employer-valued skills such as teamwork, communications and attention to detail.
Expose the student to the environment and expectations of performance on the part of
engineering in professional practice, private/public companies or government entities.
Enhance and/or expand the student's knowledge of a particular area(s) of engineering
To Increase self-confidence of students and helps in finding their own proficiency.
To provide an exposure to real life industry environment

Course Outcomes:

On completion of this course, the students will be able to

- CO1. Experience of applying existing engineering knowledge in similar or new situations
- CO2. Ability to identify when new engineering knowledge is required, and apply it
- CO3. Ability to integrate existing and new technical knowledge for industrial application
- CO4. Understanding of lifelong learning processes through critical reflection of internship experiences
- CO5. To develop and improve business skills in communication, technology, quantitative reasoning, and teamwork.
- CO6. Develop a solid work ethic and professional behaviour, as well as a commitment to ethical conduct and social responsibility.
- CO7. Expand network of professional relationships and contacts.
- CO8. Observe and participate in business operations and decision-making.

Catalogue Description

The students are required to undergo industrial training/ internship in the last semester of the degree from a reputed organization.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

Mapp	oing between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	Experience of applying existing engineering knowledge in similar or new situations	PO1, PSO2
CO2	Ability to identify when new engineering knowledge is required, and apply it	PSO1, PO5, PO2
CO3	Ability to integrate existing and new technical knowledge for industrial application	PO4, PO6, PO3
CO4	Understanding of lifelong learning processes through critical reflection of	PO6
	internship experiences	
CO5	To develop and improve business skills in communication, technology, quantitative reasoning, and teamwork.	PSO3, PO10
CO6	Develop a solid work ethic and professional behaviour, as well as a commitment to ethical conduct and social responsibility	PSO3, PO6 , PO8
CO7	Expand network of professional relationships and contacts.	PO9
CO8	Observe and participate in business operations and decision-making.	PO11

		neeri	lem anal ysis	gn/d evel opm	duct inve	ern tool usag		ron ment and	cs	vidu	muni catio n	_	long Learn ing	Conc	ation and Indus	s and Com
		ge			of com		_	inabi lity				and			Frien dly	Skills
								nity				finan ce			uly	
Cours																
e	Course	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO	PSO	PSO
Code	Title	1	2	3	4)	O	/	٥	9	0	1	2	1	2	3
ETEC 470A	INTERN SHI P	3	3	2	2	2	2		3	3	3	2	2	3	2	2

2= moderately mapped

ETEL285A	Buisness Communication Skills-I	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To provide an overview of Prerequisites to Business Communication.
- 2. To put in use the basic mechanics of Grammar.
- 3. To provide an outline to effective Organizational Communication.
- 4. To underline the nuances of Business communication.
- 5. To impart the correct practices of the strategies of Effective Business writing.

Course Outcomes

On completion of this course, the students will be able to

- CO1. To be familiar with the complete course outline/Course Objectives/Learning Outcomes/ Evaluation Pattern & Assignments
- CO2. Understand the correct form of English with proficiency.
- CO3. To demonstrate his/her ability to write error free while making an optimum use of correct Business Vocabulary & Grammar.
- CO4. To distinguish among various levels of organizational communication and communication barriers while developing an understanding of Communication as a process in an organization.

Catalog Description

In this course, the focus will be on improving LSRW skills, i.e. listening, speaking, reading and writing. Students will learn how to communicate effectively though prescribed syllabus as well as classroom assignments/activities specifically designed to encourage students to play an active role for enhancing their knowledge and developing learning strategies.

List of Experiments (Indicative)

	Self- introduction: Informal introduction & formal	
	introduction'; Formal Introduction of oneself in front of the	
1	group.	2 lab hours
	Personal Branding: Social media presence (Facebook, twitter	
	and LinkedIn), Networking, Digital Etiquettes	
2		2 lab hours

	JAM: Introduction to 'Just A Minute speech' and the	
	-	
	'Extempore speech'; Preparation of speech on given topic	
	(different topic for each student); delivery of the speech;	
	Feedback (on content, time management, body language etc.	
	highlighting the positive aspects.)	
3		2 lab hours
	T'A C	
	Listening Comprehension: Listen to online / downloaded	
	oration by renowned Orators; write down the content in a precise	
4	form and give an oral presentation of that write up following all	2 lab hours
	the etiquettes of public speaking.	
	Academic Language Skills, Identify ways of emphasizing,	
	signposting, organising, etc used in spoken (academic) English,	
	Read and comprehend authentic English language publications,	
	both print and electronic, such as newspapers, journals,	
	brochures and catalogues, course materials and online blogs.	
5		2 lab hours
	Turn Coat : Speaking for and against on a topic by the same	
6	person with time specification; topics to assigned from the	2 lab hours
U	current events; feedback & suggestions for improvement.	2 lab nours
_	Turn Coat : Speaking for and against on a topic by the same	2111
7	person with time specification; topics to assigned from the	2 lab hours
	current events; feedback & suggestions for improvement.	
	Conversation ability: Characteristics of effective conversation;	
	Listening to a few sample conversations; preparing conversation	
	based on the given situation; enacting the situation through	
8	effective delivery of the script; feedback & suggestions for	2 lab hours
	improvement	
	Role Play: Characteristics of Role Play; assigning roles;	
9	developing the content to deliver; enacting the role with	2 lab hours
	effective delivery; feedback & suggestions for improvement	
	Etiquettes and Manners: Etiquette Basics: Emails and Spoken	
	Words, Professional Appearance and Grooming, Office	
	Etiquette: Workplace Behaviour	
10		2 lab hours
	Public Speaking: Characteristics of effective Public speaking;	
	possible barriers; watching demo online; topic assignment,	
	information gathering & recording; delivery in front of the class;	
	feedback & suggestions for improvement (Different topic for	
11	each student)	2 lab hours
	Group Discussion: Importance and characteristics; Dos &	
12	Don'ts in GD; Demo display; assign topic for the group,	2 lab hours

	Preparation & performance; feedback & suggestions for	
	improvement.	
	Debate : Difference between Group Discussion & Debating;	
	Watching demo of Debating; Topic for the group of 2 or 4;	
13	preparation and performance; feedback & suggestions for	2 lab hours
	improvement	
	Interview: Importance & purpose of Job Interview; Interview	
	etiquettes; Watch demo interview; Appear for formal mock	
14	interview; feedback & suggestions for improvement.	3 lab hours
	Interview: Importance & purpose of Job Interview; Interview	
	etiquettes; Watch demo interview; Appear for formal mock	
15	interview; feedback & suggestions for improvement.	2 lab hours

Text book [TB]:

Soft Skills & Employability Skills by Sabina Pillai and Agna Fernandez published by Cambridge University Press 2018.

Reference Books

1. Professional Speaking Skills by Aruna Koneru, Oxford Publications, 2015 2. Soft Skills for everyone by Jeff Butterfield Cengage Learning 2011

E Books

- 1. https://www.britishcouncil.in/english/courses-business 27
- 2. http://www.bbc.co.uk/learningenglish/english/features/pronunciation
- **3.** http://www.bbc.co.uk/learningenglish/english/
- 4. http://www.antimoon.com/how/pronunc-soundsipa.htm
- 5. http://www.cambridgeenglish.org/learning-english/free-resources/write-and-improve/

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

Relationship between the Course Outcomes (COs) and Program Outcomes (POs) Mapping between COs and POs

	Course Outcomes (COs)	Mapped Program Outcomes
CO1	To be familiar with the complete course outline/Course Objectives/Learning Outcomes/ Evaluation Pattern & Assignments	P010, PSO3
CO2	Understand the correct form of English with proficiency.	P09, PSO3
СОЗ	To demonstrate his/her ability to write error free while making an optimum use of correct Business Vocabulary & Grammar.	P09, PSO3
CO4	To distinguish among various levels of organizational communication and communication barriers while developing an understanding of Communication as a process in an organization.	P010, PSO3

		Engi neeri	analy sis	Desi gn/de velop ment of soluti ons	Cond uct invest igatio ns of comp lex probl ems	ern tool usag e	engi neer and socie ty	ronm	s	idual	munic ation		long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
	Buisness Communicatio n I									3	3					3

1=weakly mapped

2= moderately mapped

ETEL286A	Buisness Communication Skills-II	L	T	P	С
Version 1.0		0	0	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To apply business communication theory to solve workplace communication issues.
- 2. To demonstrate the communication skills required in the workplace.
- 3. To understand complex ideas in written and spoken formats.
- 4. To express complex ideas accurately in written and spoken formats.

Course Outcomes

On completion of this course, the students will be able to

- CO1. To demonstrate his/her ability to write error free while making an optimum use of correct Business Vocabulary & Grammar.
- CO2. To distinguish among various levels of organizational communication and communication barriers while developing an understanding of Communication as a process in an organization.
- CO3. To draft effective business correspondence with brevity and clarity.
- CO4. To stimulate their Critical thinking by designing and developing clean and lucid writing skills.

Catalog Description

In this course, the focus will be on improving LSRW skills, i.e. listening, speaking, reading and writing. Students will learn how to communicate effectively though prescribed syllabus as well as classroom assignments/activities specifically designed to encourage students to play an active role for enhancing their knowledge and developing learning strategies.

List of Experiments (Indicative)

1	Interpersonal Communication and Building Vocabulary	2 lab hours
2	Interpersonal Communication and Building Vocabulary	2 lab hours
3	Activities on Reading Comprehension	2 lab hours
4	Activities on Reading Comprehension	2 lab hours

5	Activities on Writing Skills	2 lab hours
6	Activities on Writing Skills	2 lab hours
7	Activities on Presentation Skills	2 lab hours
8	Activities on Presentation Skills	2 lab hours
9	Activities on Group Discussion and Interview Skills	2 lab hours
10	Activities on Group Discussion and Interview Skills	2 lab hours
11	Conflict Management	2 lab hours
12	Conflict Management	2 lab hours
13	Leadership Skills	2 lab hours
14	Team Building	3 lab hours
15	Social Media Engagement	2 lab hours

Text book [TB]:

Soft Skills & Employability Skills by Sabina Pillai and Agna Fernandez published by Cambridge University Press 2018.

Reference Books

1. Professional Speaking Skills by Aruna Koneru, Oxford Publications, 2015 2. Soft Skills for everyone by Jeff Butterfield Cengage Learning 2011

E Books

- 1. https://www.britishcouncil.in/english/courses-business 27
- 2. http://www.bbc.co.uk/learningenglish/english/features/pronunciation
- **3.** http://www.bbc.co.uk/learningenglish/english/
- **4.** http://www.antimoon.com/how/pronunc-soundsipa.htm
- 5. http://www.cambridgeenglish.org/learning-english/free-resources/write-and-improve/

Modes of Evaluation: Quiz/Oral practical oral exam/presentation/projects/Practical Examination

Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Projects/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs	
	Course Outcomes (COs)	Mapped Program Outcomes
CO1	To demonstrate his/her ability to write error free while making an optimum use of correct Business Vocabulary & Grammar.	P010, PSO3
CO2	To distinguish among various levels of organizational communication and communication barriers while developing an understanding of Communication as a process in an organization.	P09, PSO3
CO3	To draft effective business correspondence with brevity and clarity.	P09, PSO3
CO4	To stimulate their Critical thinking by designing and developing clean and lucid writing skills.	P010, PSO3

		Engi neeri	analy sis	Desi gn/de velop ment of soluti ons	Cond uct invest igatio ns of comp lex probl ems	ern tool usag e	engi neer and socie ty	ronm	s	idual	munic ation		long Learn ing	cation of Conce pts	ation and Indust	Com munic ation
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
	Buisness Communicatio n II									3	3					3

2= moderately mapped

3=strongly mapped

ETEC 371A	Quantitative Aptitude Reasoning-I	L	T	P	C
Version 1.0		-	-	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives: The subject expects students to achieve the following objectives:

- 1. To develop critical thinking skills
- 2. To develop the ability to analyze ideas, question assumptions and assess arguments
 - 3. To clarify and interpret concepts and propositions.

Course Outcomes: Upon the completion of this course the students will be able to:

CO1. Understand and analyze the costs and benefits associated with various Information Systems projects.

CO2 Conduct reasoning to solve organizational problem, make recommendations, and draw logical conclusions.

CO3 Understand the various reasoning concepts to apply in practical life.

Catalog Description

Quantitative Aptitude Reasoning-I is designed for students who have basic knowledge of simple mathematical calculations and Collegiate Learning skills.

Course Content

Unit I: 10 hours

Numbers, H.C.F. & L.C.M. of Numbers, Decimal Fractions Simplification, Square Roots &

Cube Roots, Whole numbers problems, Permutations and Combination, Decimals problems, Problems on Trains, Fractions problems, Numbers and Ages, Percentage problems.

Unit II: 8 hours

Boats and Streams, Ratio & Proportion, Pipes and Cistern, Square roots, Surds and Indices,

Averages, Interest, Heights and Distances, Profit and Loss, Discount, Partnership.

Unit III: 8 hours

Business, Permutations and Combination, Mixture and Alligation, Time and distance Series,

Time & Work, The Data Interpretation part covers Tabulation, Volume & Surface Areas, Races & Games of Skill, Calendar, Clocks.

Unit IV: 10 hours

Stocks & Shares, Permutations & Combinations, Probability, True Discount, Banker's Discount, Heights & Distances, Odd Man Out & Series, Data Interpretation: Tabulation, Bar Graphs, Pie Charts, Line Graph.

Textbooks:

- 1. Quantitative Aptitude for Competitive Examination by R S Agrawal, S. Chand publications.
- 2. Quantitative Aptitude and Reasoning by R V Praveen, PHI publishers.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term
		nce	Exam	Assignment/ etc.	Exam
Weightage (%)	10	10	20	10	50

	Mapping between COs and POs											
	Course Outcomes (COs)											
CO1	Understand and analyze the costs and benefits associated with various Information Systems projects.	PO2										
CO2	Conduct reasoning to solve organizational problem, make recommendations, and draw logical conclusions.	PO3										
CO3	Understand the various reasoning concepts to apply in practical life.	PO4										

		neeri ng	em analy sis	gn/de velop ment of soluti ons		ern tool usag e	engi neer and socie ty	ronm ent and	S	idual		t	long Learn ing	cation of Conce pts	ation and Indust ry	Ethics and Com munic ation Skills
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC 371A	Quantitative Aptitude Reasoning-I		3	2	3									3		

2= moderately mapped

ETEC 372A	Quantitative Aptitude Reasoning-II	L	T	P	С
Version 1.0		-	-	2	1
Pre-requisites/Exposure					
Co-requisites					

Course Objectives: The subject expects students to achieve the following objectives:

- 1. To develop critical thinking skills
- 2. To develop the ability to analyze ideas, question assumptions and assess arguments
- 3. To clarify and interpret concepts and propositions.

Course Outcomes: Upon the completion of this course the students will be able to:

CO1. Understand and analyze the costs and benefits associated with various Information Systems projects.

CO2 Conduct reasoning to solve organizational problem, make recommendations, and draw logical conclusions.

CO3 Understand the various reasoning concepts to apply in practical life.

Catalog Description

Quantitative Aptitude Reasoning-II is designed for students who have completed Foundations of Mathematical Reasoning and the co-requisite Frameworks for Mathematics and Collegiate Learning

Course Content

Unit I: 10 hours

Verbal Reasoning: General Mental Ability, Series Completion, Analogy, Classification, Coding-

Decoding, Blood Relations, Puzzle Test, Sequential Output Tracing, Direction Sense Test, Logical

Venn Diagrams, Alphabet Test, Alpha - Numeric Sequence Puzzle, Number.

Unit II: 10 hours

Ranking & Time Sequence Test, Mathematical Operations, Logical Sequence of Words, Arithmetical Reasoning, Inserting the Missing Character, Data Sufficiency, Eligibility Test, Assertion and Reasoning, Situation Reaction Test, Verification of Truth of the Statement.

Unit III: 8 hours

Logical Deduction, Logic, Statement – Arguments, Statement-Assumptions, Statement - Courses of Action, Statement – Conclusions, Deriving Conclusions from Passages, Theme Detection, Cause and Effect Reasoning.

Unit IV: 12 hours

Non-Verbal Reasoning: Series Analogy, Classification, Analytical Reasoning, Mirror-Images, Water-Images, Spotting Out the Embedded Figures, Completion of Incomplete Pattern, Figure Matrix, Paper Folding, Paper Cutting, Rule Detection, Grouping of Identical Figures, Cubes and Dice, Dot Situation, Construction of Squares and Triangles, Figure Formation & Analysis.

Textbooks:

- 1. Quantitative Aptitude for Competitive Examination by R S Agrawal, S. Chand publications.
- 2. Quantitative Aptitude and Reasoning by R V Praveen, PHI publishers.
- 3. Quantitative Aptitude for Competitive Examination by Abhijit Guha, Tata Mc Graw hill publications.

Modes of Evaluation: Quiz/Assignment/ presentation/ extempore/ Written Examination Examination Scheme:

Components	Quiz	Attenda	Mid Term	Presentation/	End Term		
		nce	Exam	Assignment/ etc.	Exam		
Weightage (%)	10	10	20	10	50		

Mapping between COs and POs							
	Course Outcomes (COs)	Mapped Program Outcomes					
	Understand and analyze the costs and benefits associated						
CO1	with various Information Systems projects.	PO2					
	Conduct reasoning to solve organizational problem, make						
CO2	recommendations, and draw logical conclusions.	PO3					
	Understand the various reasoning concepts to apply in						
CO3	practical life.	PO4					

		neeri ng	em analy sis	gn/de velop ment of soluti ons		ern tool usag e	engi neer and socie ty	ronm ent and	S	idual	munic ation	Projec t mana geme nt and financ e	long Learn ing	cation of Conce pts	ation and Indust	Ethics and Com munic ation Skills
Course Code	Course Title	PO1	PO2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ETEC 372A	Quantitative Aptitude Reasoning-II		3	2	3									3		

2= moderately mapped